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Nature isn’t classical, dammit, and if you want to make a
simulation of Nature, you'd better make it quantum
mechanical, and by golly it's a wonderful problem because
it doesn’t look so easy.

Richard Feynman, 1981 lecture on Simulating physics with computers.

Figure 1: Credit: Britannica.
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If you have questions, please ask Lucie offline!



A Bit of Early History in Nutshell

Manin, Feymann and Benioff (early 1980s) on analog quantum
computer and computational power beyond that of
traditional computations.

Deutsch (1985) the universal quantum Turing machine.

Figure 3: Credit: Wikipedia.

Deutsch and Jozsa (1992) one of the first quantum algorithm that is
exponentially faster than any possible deterministic classical
algorithm, i.e., given an oracle that implements
f:{0,1}" — {0,1} determine if f is constant or balanced.

Bernstein and Vazirani (1993) quantum complexity theory.



Simon (1994) a polynomial-time algorithm for a quantum computer that
distinguishes between two classes of polynomial-time
computable function, i.e., exponential quantum speedup for
finding the period of a 2 to 1 function.

Shor (1994) efficient quantum algorithms for the problems of integer
factorization and discrete logarithms.

Figure 4: Credit: Wikipedia.

Google (2019) "quantum supremacy" experiment on 53 qubits.
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Figure 5: Credit: Google.



The Four Main Postulates of Quantum Mechanics

1. State Space Postulate

e A quantum state [¢)) € H is a superposition of classical states,
written as a vector of amplitudes, to which we can apply either a
measurement or a unitary operation.

Bits Qubits
0 or 1 Oand1

Figure 6: Credit: Deep Learning University, Qiskit Tutorial, 2025



@ We use Dirac notation, i.e.,

Yo
Y1
|) ket: a column vector [¢)) = , ,
UN-1
(| bra: a row vector, Hermitian conjugation of a quantum state

) € H
Wl=1)" =[P 1 ... Pn_1],
(-|-) braket: inner product (v|¢)

([¢) = (¥, ¢) € C.

e We will always assume that |¢)) is normalized, i.e., (1)|t)) = 1. Hence,
H=CN/| 2.



@ The set of all quantum states of a quantum system forms a complex
vector space with inner product (Hilbert space denoted as ), called
the state space.

o If # is finite dimensional it is isomorphic to some CV.

e W.lo.g we can take H = CN, where N = 2", n € Z, is called the
number of quantum bits (qubits).

Bits Qubits
0 or 1 Oand1

Figure 7: Credit: Deep Learning University, Qiskit Tutorial, 2025



Example (Single Qubit System)

H=CV/| 2
1 . 0 :
|0) = 0 (spin-up), 1) = 1 (spin-down)
State |0> State |1>
10) 10}
\\\‘ \
> % Ty
1) 1}

plot_bloch_vector ([0, O, 1], title="Bloch Sphere for state |[0>")
plot_bloch_vector ([0, 0, -1], title="Bloch Sphere for state |[1>")



Probabilities on Measurements

a

) =al0) + bl1) = |5 < .

Bloch Sphere for state |- > = 1/sqrt(2) [0> -1/sqrt(2)|1>
0

plot_bloch_vector([-1, 0, 0], ...
title="Bloch Sphere for state |- > = 1/sqrt(2)|0> - 1/sqrt(2)[1>")
Normalization condition implies |a|? + |b|? = 1.
If we perform a measurement we will get |0) with probability |a|? and |1)
with probability |b|?.



Example

Let us calculate the probabilities of measuring 0 and 1 upon measurement

of a qubit in the state |¢)) = % |0) + % |1). The probability of obtaining
0 on measurement is given as
0= = () -3
Ul T\ve) T2

Similarly, the probability of obtaining 1 on measurement can be calculated

as
(1)‘12 <1>21
PR T\ T

Since both coefficients for |0) and |1) are equal, the probabilities of

obtaining 0 and 1 on measurement are the same. Also the resulting
probabilities of measuring 0 and 1 add up to 1, as they should.




|x,y) represents Kronecker product of |x) and |y), which can also
be written as |x) |y) or |xy).

Kronecker product of m |0)'s is denoted by [0™) or |0)™.

Iy denotes the N x N identity matrix.

The j* column of matrix Iy is denoted by |j) for j =0,1,... N — 1.
The binary representation of j € N,0 < j < 2" — 1 is given by

J=lne1-dijo]l =Jjno1- 2" 4 4 -2 4o 20



2. Quantum Operator Postulate

@ The evolution of a quantum state from |4} to |¢)') is always achieved
via a unitary operator U € CNxCN e,

W'y =Ulyp), UU=Iy.

@ In quantum computation, a unitary matrix (operator) is referred as a
gate.

@ An operator acting on an n-qubit quantum state space H is called
n-qubit operator.



Example (Single Qubit Operators)
1 ]1 1
Hadamard H= ﬁ [1 _1]

Pauli matrices

01 0 —
O'X—X—|:1 0}, O'y—Y—|:_Z 0}, o,=12Z
cos? —sin?
Rotation along Pauli-Y axis R, (0) = [ .7 0
Sin 5 Cos b

Phase S = [1 O}
0 =



Two-Qubit Operators

1
controlled not (CNOT) CNOT = 8
0

1000

0 010

SWAP SWAP = 010 0

0 001

O O = O

= O O O

o = O O



3. Quantum Measurement Postulate (Projective Measurement)

@ If we measure quantum state [¢)), we cannot "'see' superposition.
We only can get a classical state [j), j=0,...,N—1.

Input During Computation Output

Classical Computer
Oor1 ) D. ) Oor1
Oor1

Quantum Computer

Oor1 — e Oor1

Superposition of
Oand1

Figure 8: Credit: Deep Learning University, Qiskit Tutorial, 2025

e We do not know in advance which |j) we get, we only know the
probability |o;|? of observing |j) (Born’s rule).



If we measure [¢)) and get j = 0, then state |¢)) disappears, and all
that is left is |j), i.e., observing the state |¢)) "collapses" it to the
classical state |j).

Quantum observables (in finite dimension) always correspond to a
Hermitian matrix with spectral decomposition

M:Z)\um, with A\p, € R and P2 = P,

The outcome of a measurement of a quantum state |¢)) by a
quantum observable M is an eigenvalue )\, with probability
Pm = (Y| Pm|1). After the measurement

_ Pulv)
\/Pm

However, this is not a unitary process.

[¥)

The expectation value of the measurement outcome is

By (M) = (V[ M) .



4. Tensor Product Postulate

@ An element (quantum state) in the n-qubit state space
H = (C?)®" =2 C?" can be written as

2"—-1

)= aili),

j=0
where single qubit states |j),0 < j < 2" — 1 are orthonormal basis of
. A complex number ¢; is called the amplitude of |j) in [¢)).

e If 1» € C?", we can use the following notation

V) = |[Y0)® Y1) ®... 8 [Ym-1)
P01+ - Ym-1) = [0, P15+ s Pm-1)
[Po) [¥1) - [¥m-1) - (1)

o ) € {0,1}" is called a classical bit-string and [¢) 1) € {0,1}" the
computational basis of C?".



Example (Two Qubit System)

The state space of two qubit system is H = (C2)®2 = C* with standard
basis

1 0 0 0

0 1 0 0

0 0 0 1

If a quantum state |¢)) has m components with state spaces {7—[,-}7:01, its
state space is a tensor product denoted by H = ®7;61H,- and

1Y) = |vo) @ Y1) @ -+ @ |[Ym—1), where |1h;) € H

However, not all quantum states in H can be written in this form, e.g., the
Bell state (the EPR pair)

9 = —=(100) + 11)) = -

V2

_ O O =



Quantum Circuits

System registers (signal qubits): storing quantum states of interest.

Ancilla registers (ancilla qubits): auxiliary registers needed to
implement the unitary operation acting on system registers.

ancilla qubits

N 10)&m A

%) 1)

system qubits




Example Quantum Circuits

Pauli X gate X10) = |1)
o) —{ x 1)

|0)————10)

. 7\ [ 0986
Hadamard gate H(\@ 10) + \£|1>> = [ _0.169

(X ® 1)]00) = |10)

|a)—e—1a)

CNOT gate CNOT |00) = |10)
|b}—b—]a® b)
|a)——|b)

SWAP gate SWAP|10) = |01)

|b)—%—]a)
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© Quantum Numerical Linear Algebra (QuantNLA)



QuantNLA: Expectations and Restrictions
@ Quantum computers are known to provide exponential quantum
speedups for some problems, so it is natural to understand what they
can do in linear algebra problems.
@ Typical cost of classical algorithm for N-dimensional system is
poly(N) vs. expected O(poly log(N)) cost for quantum
algorithms.

No-cloning Theorem (Wootters & Zurek, Dieks 1982)

Consider two quantum systems S; and S, with a common Hilbert space
H =Hs, = Hs,. There is no unitary operator U on H ® H such that for
all normalized states |¢))s and |e)g, in H

U( Wf>s1 ’e>52> = e W)sl W’>52 )

where o depends on [¢) and |e).

o forbids generic quantum copy operation,

@ all classical iterative algorithms are not feasible for quantum
computing as they require storing intermediate information.



Two exceptions of the No-cloning Theorem

o If we know how a quantum state is prepared, i.e., [¢)) = Uy |¢) for a
known unitary U, and some |¢), then we can copy |¢) via

(19 Uy) [¢) @ |9) = [¢) @) .
o CNOT gate enables copying classical information, i.e.,
CNOT [4,0) = |4, ¢), o €{0,1}.

However, it can not be used to copy a superposition of classical bits
|v) = al0) + b|l), i.e.,

CNOT [)  [0) = 2[00) + b[11) #[¢) ® [0).

No-deleting Theorem
There is no unitary operator U such that

U|0") ®|x) =[0") @ |0").

@ given two copies of a quantum state it is impossible to remove one
copy (consequence of No-cloning Theorem).



The Problem of the Input Model

How to get information in a vector v € CV or a matrix A € CV*N into the
quantum computer?

Input Model for Vectors in CV
@ The n-qubit quantum state [¢)) can be viewed as

N = 2"-dimensional vector normalized under 2-norm (some
information may be lost).

@ The cost of storing n-qubit quantum state is ~ N.
Black-box quantum state preparation (state preparation oracle)
Goal: Construct an n-qubit state |¢)) given as a (quantum) oracle

2"—1

Uy : [0) = [¢) = Z Vi lj) -

@ Amplitudes 9); are unknown a priori and can only be accessed through
an oracle or black-box.

e Each amplitude 1); is encoded with n-bit precision.
@ The oracle Uy, can be invoked, as required, with complexity O(1).



Quantum State Preparation Algorithms

Grover and Rudolph (2002) given a certain probability distribution
{pj}, how to efficiently create a quantum superposition

¥) = ;Pj i)

Sun et al. (2021) asymptotically optimal circuit depth for quantum
state preparation, ©(2"/n) (no ancillary qubits), ©(n) (with
O(2") ancillary qubits).

Araujo et al. (2021) asymptotically optimal circuit depth for quantum
state preparation ©(n) (with O(2") ancillary qubits).

Rosenthal (2022) asymptotically optimal circuit depth for quantum state
preparation ©(n) (with O(2") ancillary qubits).



Zhang, Li and Yuan (2023) any n-qubit quantum state can be prepared
with a ©(n)-depth circuit using only single- and two-qubit
gates (with O(2") ancillary qubits). For sparse quantum
states with d > 2 nonzero entries, circuit depth to
O©(log(nd)) with O(nd log(d)) ancillary qubits.

Laneve (2023) quantum state preparation using quantum signal
processing (QSP) and quantum singular value transform
(QSVT) within error ¢ in time O(,/7T(n)log(1/¢)) and
[2 4 loga(6/c7y)] additional qubits, where O(T(n)) is time
for amplitude computations and /7 is an inverse polynomial
in n.



Block-Encoding (BE) = Input Model for Matrices

Step 1: embed a (non-unitary) matrix A, ||A|]2 < « into a unitary
matrix Ua of larger size (after appropriate scaling), i.e.,

LA
UA — |:oz* ::| )

Step 2: convert unitary U, into a quantum circuit (express U4 as a
product of simpler unitaries) to allow computation on
quantum computer.

o HA

Ua

)

Figure 9: Circuit for General Block-encoding of A.

Such an encoding is useful if Ua can be implemented efficiently.



Definition 1 (Block-encoding
(BE) [Chakraborty et al., 2019, Camps et al., 2024])

Given an n-qubit matrix A (A is of size N x N with N =2"), if we can
find a,e € Ry, and an (m + n)-qubit unitary matrix U4 (U4 is of size
2mFm 5 20tM) such that

A —a((0®" @ ) Ua(|0)*™ @ 1) ||2 < e,

then U, is called an (a, m, £)-block-encoding of A. If the block-encoding
is exact with ¢ = 0, Uy is called an («, m)-block-encoding of A.

Here « is the block-encoding factor (subnormalization factor) that satisfies
a > ||A]] and m is the number of ancilla qubits used to block encode A.

4

Simple check using matrix form:

Since (0" ® 1, =[l, 0] and [0™) @1, = [I(ﬂ then

a({(0®" @ 1,)UA(10)*" @ I,) = a[I, 0] [3 j ['0] =A.

*



Block-Encoding: Existence and Uniqueness

Theorem 2 (Existence of BE [Alber et al., 2003]) J

Every non-unitary matrix A can be embeded in a (||Al|2, 1)-block-encoding.

Proof: W.lo.g. assume that ||A| < 1 (otherwise consider 2). Consider
Singular Value Decomposition (SVD) of matrix A, i.e., A=W V* (all
oj €[0,1]). Then




Some Simple Block-Encodings

"tivial" example Let U be a unitary matrix, then U is a
(1,0, 0)-block-encoding of itself.

ascalar 0 <a <1 Let A=ac C™! Then a block-encoding of A
can be constructed as

U — o V1 — a2 or Unx— « —V1—a?
= lvite —a a= -
Remark 3

This answers the uniqueness question.




||Al[2 <1 Then a block-encoding of A can be constructed as

. A V= AA U. A = AA )
ATIN—AA —A o HAT I T—AA A

Existence is not all

This block-encoding requires computing the square root of A*A which
cannot be done efficiently on quantum computer using O(poly(n))
quantum gates. Theorem 2 does not guarantee the existence of an
efficient quantum circuit implementation.




Some Good News [Camps et al., 2024]

Qo (71
0 < |ai|,|az| < 1. Then a block-encoding of A can be constructed as

UA = 1 |:Uoz _U/B:| )

. . . a1« .
2 x 2 symmetric matrix  Let us consider A = % ( L2 > with

2 |Us U,

where
ar ax ar —ap P B2 B DB
| ] w2
-~ a1 a2 —B2 B B B

with 81 = /1 —a2 and B =4/1—a3.



Define ¢ = arccos (a1) + arccos () and ¢ = arccos (1) — arccos (arz),
then the block encoding U can be factored as a product of simpler
unitaries, i.e.,

Ua = UgUsUsU3U2U;1 Uy,
where

o Uy=Us=h®H® b,
o Ui =Ri®@h®h,
o lh=Us=(bh@E+X®E)® b,
o 3=R®h®h,
o Us=h®(Eo®h+ £ ®X),
with
H,X  the Hadamard and Pauli- X gates, respectively,
Ri,R>  rotation matrices Ry = R, (¢1), Ro = Ry (¢2), and
Eo,E1  projectors, i.e., Eg = eged = [0) (0], E1 = eref = [1) (1].



The quantum circuit associated with the factorization is given as

|0) R —@— R — ~A
10— ] H
1) e,

Figure 10: Circuit for General Block-encoding of a 2 X 2 symmetric matrix A.

Remark 4

Note that the unitary that block encodes the 2 x 2 matrix A is of
dimension 23, i.e., 2 ancilla qubits in addition to the n = 1 system qubit
required to match the dimension of A, which is N =2". It is twice the
dimension of the block encoding given through (2) (one using square root
of A*A).




Some Good News = Block-Encoding in Practice
Block-encoding of a general matrix is hard, however, there are some
success stories:

sparse matrices: based on "query oracles" giving the position and binary
description of matrix entries [Berry et al., 2015b,
Gilyén et al., 2019, Childs et al., 2017], specific 2" x 2" in
poly(n) complexity [Camps et al., 2024],

quantum walks on highly-structured graphs:
[Szegedy, 2004, Childs, 2010, Loke and Wang, 2017],

structured matrices: [Sinderhauf et al., 2024],

dense and full-rank kernels: using hierarchical
matrices [Nguyen et al., 2022],

pseudo-differential operators: efficient and explicit BE
algorithm [Li et al., 2023],

pairing Hamiltonian: [Liu et al., 2025].



State-of-the-art for sparse A

Assume that A is a s-sparse matrix with ||A] < 1.

@ encode the position and the numerical value of the nonzero matrix
elements through the following oracles, i.e.,

Orow ’Ja nz> = |./7 row(j, nz))
Ocol ‘Ja nz> = |./7 CO|(j, nz))
Oalj, k,z) = |j, k, 2 ® A(t))

where row(j, nz) is the row index of the nzt" nonzero element in the
jt column, col(j, nz) is the column index of the nz!" nonzero element
in the j®row, with j € 1,..., N and

nz €1,...,s [Berry and Childs, 2009, Childs et al., 2017].

@ combine these query oracles into matrix query oracle [Lin, 2022] to
enable access to the matrix data.

A (s, n+ 3,¢)-block-encoding of A can be constructed via O(1) queries
to above oracles and O (n + log®/?(s/¢) primitive gates.



Fast Approximate BLock-Encodings
(FABLE) [Camps and Van Beeumen, 2022]

e Fast Approximate BLock-Encodings (FABLE)
[Camps and Van Beeumen, 2020, Camps and Van Beeumen, 2022]
generates quantum circuits that block encode arbitrary matrices up
to prescribed accuracy,

@ defines a matrix query operation Q4 for a given matrix A which is
then synthesized in a quantum circuit.

Definition 5 (Matrix Query Operation O,)
Let A=ay],i,j=1,...,N, with N =2" and ||a;|| < 1. Then the matrix
query operation O4 applies

010} 1i) [j) = (a5 0) + /1 —|agl* 1) ) |i) i) ,

where |i) and |j) are n-qubit computational basis states.




High-level Quantum Circuit

0) [~

0)®"— H®n Oa H®n
\ Al)
[¥) TAT

Figure 11: High-level quantum circuit structure for FABLE block-encoding a matrix A in terms
of a matrix query oracle Q4.

@ all information about the matrix are encoded in a single matrix
query oracle which can be implemented with simple one-qubit R,
and R; rotations, two-qubit CNOT gates, and some additional
Hadamard and SWAP gates

o the gate complexity of a FABLE circuit for general, unstructured
N x N matrix is bounded by O(N?) (with prefactor 2 for real and 4
for complex matrices) plus limited polylogarithmic overhead.



Let us verify that the circuit U4 in Figure (11) is indeed an (1/2",n+ 1)
encoding of an n-qubit matrix A, i.e., satisfies Definition 1.

The circuit U4 can be written in matrix notation as
Uy = (Il X H®n ® ln)(ll &® SWAP)OA(Il X H®nln).
For Ux to satisfy Definition 1 we need
. . 1
(0[ (O[*" (ilUa | 0) [0)*"]j) = o 2

First, we have

2n—1
Hen 1 .
010)°711) 7= = S 10)1K)),
\/27‘1(:0
o, 1 — 2 .
2 3 (ai0) + y/1 - lalin ) 1oL,
k=0
SWAP —~ -
ﬁﬁﬁz(akﬁo 1 [aPl0) ) 16
k=0



Similarily,

0)[0)71i) 255 = 3 joye)i.

Now combining both, yields

(01 €0|®" (i Ual0)[0) ")

1 2n—1
:p<zwwm)

(=0

2n_1
<§Z<wﬂw+- 1—bmﬁD)UHH>,

k=0

- anars

which completes the proof.



A € RV For given row and column indices i and j, 04 acts on the |0)
state of the first qubit as an R, gate with angle 6;; = arccos (aj), i.e.,

) _|cos(0y) —sin(0;)] [1] dij
Ry (205)10) = sin(6;) cos(0;) | [0]  |4/1-— a,?j
Hence, the matrix query unitary Q4 for a real-valued matrix is a matrix
with the following structure

00 —500
Co1

0,4 CN—-1,N—1
500 €00 —SN-1,N-1
501 Co1

SN—1,N—1 CN—-1,N—1

where ¢jj == cos (6;) and s;; := sin (0j;).
For details see
[Camps and Van Beeumen, 2020, Camps and Van Beeumen, 2022].



Block encoding = Standard-Form Encoding

Definition 6 (Standard-form Encoding [Low and Chuang, 2019])

A signal operator H (acting on a Hilbert space H, whose states are
denoted |-),) with spectral norm ||H|| < 1 is encoded in the standard-form
if we may query a unitary oracle U : H, ® Hs — H, ® Hs (for some
auxiliary Hilbert space H, whose states are denoted |-),) and a unitary
state preparation oracle |G), := G|0), € H, such that

(G, 21U (|G)@1s) =A. (3)

A pair (U, G) is called a standard-form encoding of A. Here I, denotes
identity acting on Hs.

Remark 7

Note that choosing |G), := G|0), = |0Y®™ immediately provides
equivalence with Definition 1.




Matrix-vector Product

Input: n-qubit quantum matrix A and quantum state |¢)
Step 1 Block-encode A, ||A]| <1, i.e,

LA«
=[]
G
0
Step 2 Apply Ua to an "extended" vector [0™,¢)) = |07) |¢0) = | . |, i.e.,
ill. :
ancilla system 0

v
1 0
uatomuy = (28 1L = A =[]+ 2] = ov1ae o
0 unnormalized state

Step 3 "Get" the product A|¢) by measuring the ancilla qubits
(10) (0] @ 1)([0) [Ap) + 1) [«)) = |0) |A¢) .



Circuit for Matrix-vector Product

o=
Ua

\ Al)
[¥) TAR)

e To obtain A |¢)), we need to measure the qubit 0 and only keep the
state if it returns 0.

@ Provided the outcome of the measurement on the first wire is |0”)
then the output of the circuit is (||A|¥) ||/a)?.

@ Need to measure the first ancilla qubit.
e The success probability of this measurement is (||A|¥) || /a)?.



Quantum vs Classical Numerical Linear Algebra

] H Classical \ Quantum
State space N=2" n
Space elements N-dimensional n-qubit quantum state
vectors (N-dimensional unit vector)
Cost O(poly(N)) | O(poly log(N)) = O(poly(n))
Vectors @
(entries)
Matrices any unitary
Copying @ @

information
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The Quantum Fourier Transform (QFT)

Let wy = e2™/N he an N-th root of unity, i.e., wﬁ =1. Thenan N x N
unitary matrix

Fy =

:'k
|

is called the Fourier transform.
@ Since Fy is unitary and symmetric, F,\_,1 = Fp-
@ The naive way of computing the Fourier transform of v = Fyv of
vector v € RN would take O(N?) steps.
@ A more practical way is through the Fast Fourier Transform [Cooley
and Tukey, 1965] as it takes only O(NlogN) steps.

@ As a unitary matrix Fp can be interpreted as a quantum operation
(n-qubit unitary), i.e., mapping an N-dimensional vector of
amplitudes to another N-dimensional vector of amplitudes, and called
the quantum Fourier transform (QFT).



@ The QFT is an implementation of

=
L

WK
Urr ) = e*™ W |k)

0

5~
T

where N = 2", using a quantum circuit with O(n?) elementary gates
(2-qubit SWAP and controlled rotation gates) and no ancilla quibits,
which is exponentially faster than the FFT.

@ The QFT provides only the amplitudes of the resulting states,
not directly the entries of the Fourier transform.

@ For more details check
[Coppersmith, 2002, Nielsen and Chuang, 2001,
Hales and Hallgren, 2000, Weinstein et al., 2001, Camps et al., 2021].



Linear Combination of Unitaries (LCUs) [Berry et al., 2015a]

Goal: given a few block-encoded matrices, we often need a block
encoding of their linear combination, i.e., given block encodings U4 and
Ug of two matrices A and B, respectively, a block encoding of A+ B is
given by the circuit

i o=

[Y)——— Uaj— Us

Now suppose we wish to implement a unitary V that can be written as a
linear combination of many unitary gates U;, i.e.,

V= Z c’),'U,'7

where the unitaries U; are considered easy to perform in the model under
consideration (e.g., query complexity or gate complexity).



LCU Lemma [Kothari, 2014, Berry et al., 2015a]

Lemma 8 (Exact LCU Algorithm [Kothari, 2014])

Let V be a unitary matrix such that V. = ) a;U; is a linear combination

i€
of unitary matrices U; with a; > 0 for all i. Let A be a unitary matrix that
maps |0™) to f Z Vaili), where a:= ||d||1 = Za, Then there exists a

quantum algor/thm that performs the map V exactly with O(a) uses of A,
U:=>_|i){(i| ® U;, and their inverses.
i

Lemma 9 (Approximate LCU algorithm)

Let \~I~be a matrix that is 6-close to some unitary in spectral norm, such
that V. = > a;U; is a linear combination of unitary matrices U; with

1
aj >0 for all i. Let A be a unitary matrix that maps [0™) to % > \aili),
i
where a := ||3||1 = _ a;. Then there exists a quantum algorithm that

performs the map VI with error O(av/4) and makes O(a) uses of
AU =3 |i)(i|® Uj, and their inverses.




From LCU Lemmma to Quantum Circuit

LCU [Berry et al., 2015a] We can get a
(|[¢ll1, [log, KT)-block-encoding using:
@ select oracle SEL:= ) [i){(ij®U;
i€[K]
o prepare oracle PREP[0) = —2— >~ ,/qi),
el &4

where K > 2.
General LCBE [Gilyén et al., 2019] maxm; + [log, K| ancillas.

0™) PREP — PREP!

SEL

)




@ The LCU lemma states that the number of ancilla qubits needed
depends algorithmically of the number of terms in the linear
combination of unitaries

@ Significant overhead in terms of the number of ancilla qubits needed,
procedure requires implementing a sequence of sophisticated
multi-qubit controlled-unitary operations (challenging for
intermediate-term quantum computers).

@ For implementing any Linear Combination of Unitaries
see [Chakraborty, 2024].



Quantum Phase Estimation (QPE) [Kitaev et al., 2002]

Task: Suppose we can apply a unitary U and we are given an eigenvector
|1)) of U corresponding to the unknown eigenvalue A. Our goal is to
compute or at least approximate the A.

@ Quantum algorithm to estimate the phase corresponding to an
eigenvalue of a given unitary operator (eigenvalues of a unitary
operator have unit modulus, hence they are characterized by their
phase),

@ Algorithm that operates on two sets of qubits (registers) containing n
and d qubits, respectively,

@ We assume oracular access to the unitary operator U and a quantum
state |¢)

@ The cost of the algorithm is considered to be only the number of
times U needs to be used (not the cost of implementing U).



(imaginary) Hadamard test: estimating the real and imaginary part of
(| U]p), needs O(1/£2) measurements to estimate 6 to
precision .

Kitaev's method: uses 1 ancilla qubit, but d different circuits of various
depths to estimate 6 bit-by-bit,

QFT approach: one signal quantum circuit, but d ancilla qubits to store
the phase information.



Quantum Phase Estimation (QPE)

Let U be a unitary operator acting on the d-qubit register. If [¢) is an
eigenvector of U, then

Up)=e>™ ) forsome 0<6<1.

The goal of QPE is to obtain a good approximation of 8 with a small
number of gates and a high probability of success. The (ideal) QPE
algorithm is to find UQPE (a quantum circuit) that performs
transformation

Uqpe [¥)10) = [¥) 1),

where |0) = |04_1) - - - |01) |6p) with binary representation (.6p61 - - 04_1)
of 6. We can then measure the second register (qubit) to obtain 6.

Kitaev’'s Idea: use a more complex quantum circuit (and in particular,
with a larger circuit depth) to reduce the total number of queries. Instead
of estimating @ from a single number, we assume access to U?, and
estimate 6 bit-by-bit Total cost of Kitaev's method Kitaev (1995) (in
terms of queries to U is O(c71).



Outline

@ Fundamental QuantNLA Problems in Scientific Computing



Fundamental NLA Problems in Scientific Computing

Solving Linear Systems Solving Least-Squares

Given an nonsingular N x N matrix | Problem

A and vector b of size N find x Given an N x N matrix A and

such that vector b of size N find x such
that

Ax = b or equivalently x = A~ 1b. min ||Ax — b||2.

Solving Eigenvalue Problem Functions of Matrices

Given an N x N matrix A find Given an nonsingular (Hermitian

x # 0 and A € R such that for simplicity) N x N matrix A
find

Ax = Ax. f(A).




Matrix Functions - Hermitian Matrices

Many scientific computing tasks can be expressed using matrix functions,
e.g.,

solving linear systems of equation: f(A) = A~1,
Gibbs state preparation: f(A) = e A or

Hamiltonian simulation: f(A) = At

Goal: construct an efficient quantum circuit to compute f(A) |b) for any
state |b).

Idea: qubitization [Low and Chuang, 2019].



Definition 10 (Matrix function of Hermitian matrices)

Let A € CN*N be an n-qubit Hermitian matrix with eigenvalue
decomposition
A = VAV*,

where A = diag (Ao, ..., Any—1) is a diagonal matrix with Ao < -+ < Ay_3
being the eigenvalues of A. Let f : R — C be a scalar function such that
f (\;) is defined for all i =0,..., N — 1. Then the matrix function f(A)
can be defined in terms of this eigendecomposition as

f(A) == VF(AV,

where
f(A) = diag (f (Xo), f (M), .-, F (An=1)).




Qubitization for representing matrix functions

Let us first introduce the main idea behind qubitization using a simple
example. For any —1 < A <1, we can consider a 2 x 2 rotation matrix

0(\) = A V1—=X2| [ cosf sinf
T =V1=X2 A ~ |—sinf cosf|’

with the change of variable A = cosf,0 < 6 < . Direct computations
yield
0 (\) = cos(kf)  sin(kf)| _ Tk(N) V1= NUk-1(N)

—sin(kf) cos(k0) —V1 = A2U,_1(N) T(N) ’
with

_ sin(k#)  sin(karccos \)

Tk(A) = cos(kf) = cos(k arccos A), Ux_1(\) = snd i

being the Chebyshev polynomials of first and second kind, respectively.

Q If we can "replace" A by A, we obtain a (1,1)-block-encoding for the
Chebyshev polynomial T,(A).



In the following we will assume that A is queried in the exact
block-encoding model, i.e., U4 is an (1, m)-block-encoding of matrix A.
Let us consider the eigendecomposition

A= ZA, ’V,‘) <V," .
Then, since A = ((0|®°™ ® 1,)UA(|0)®™ ® I,), for each eigenstate |v;),
Ua 0™ |vi) = [0™) A |v;) + ‘J_ > — A 0™ i)+ ]¢> (4)

where J~_,> denotes an unnormalized state orthogonal to all states of the

form |0™) |¢), i.e., given a projection operator 1 = |0™) (0™| ® I,

Using a normalized state |L;) we can write

/) = 1= 2218 (5)



Hence, (4) can be written as

U [07) Jvi) = Ai [07) Jvi) + /1 = AF | L)

If we now formally denote

0" = o] end 1= 3]

we can write
Ai

WE}JﬁA- (6)

Since Uy is unitary and Hermitian, U3 = /. From this and (6), it follows

that
UA — \/1)17)\12 l_;l)\? ) (7)

which is a reflection matrix.



With change of variable A\; = cos(6;),0 < 0; <

_ |cos(6;)  sin(6;
Ua = [sin(&,-) —cos(6;)] " (8)

As our goal is to get the block-encoding of Tx(A), we want to transform
U, into a rotation matrix O(\). Note that this is possible if we can flip
the signs of the entries in the second row of Uy, i.e., multiply U4 on the
left by Rp such that

RhUax = Rn[

| cos(8;) sin(0i)|
N {—sin(ﬁ;) cos(@,-)] =009




Note that Ry = 2[1 — I, acts as a reflection operator restricted to each
subspace H;. Hence,

*

0" = Rup)t = | TN ], (10)

is a (1, m)-block-encoding of the Chebyshev polynomial T, (A). If m=1,
then Rp is just the Pauli Z gate. For m > 1, the circuit

v T 2] T

)—b !

/

Figure 12: Circuit for rotation operator O.

returns |1) |0™) if ¢» = 0™, and —|1)|¢)) if ¢ # 0™. Hence, it implements
R with the signal qubit |1) used as a work register. Altenatively, we may
discard the signal qubit, and denote resulting unitary by Rp.



Since cicuit in Figure 12 implements the operator O repeating it k times
gives the ( 1, m+ 1 )-block-encoding of Ty(A), i.e.,

v T 2] T
0)®7— S
Una

|¥) —

Figure 13: Circuit for one step of qubitization with a Hermitian (1, m)-block-encoding U4 of
Hermitian matrix A.



Quantum Linear System Problem (QLSP)

Classical Linear System Problem: Given an nonsingular (Hermitian for
simplicity) N x N matrix A and vector b of size N find x such that

Ax =b or equivalently x= A lb.
Best general purpose algorithm Conjugate Gradient (CG) method has

asymptotic complexity O(Ny/x(A).

Quantum Linear System Problem (QLSP): Given an nonsingular
N x N matrix A and a quantum state |b) of size N find (prepare) a
quantum state |x) such that

A~'|b)

IX) =Xl <e and 'X>:W'

|x) is an c-approximation of a quantum state |x).



QLSP Assumptions

@ There exists a black-box procedure to compute the elements of
matrix A, e.g., block-encoding.

@ There exists a black-box procedure to prepare the initial state
|b), i.e., |b) = U, |0") (we assume they can be implemented using
two-qubit gates in "constant" time).

@ The number of uses of the procedures determines query complexity of
the algorithm, the number of queries provides a lower bound for the
gate complexity.

Remark 11

This quantum version of the problem is, however, only useful for
computing expectation values in the solution of the system, but not for
obtaining the actual solution vector.




Query Complexity for QLSP

Harrow, Hasidim, Lloyd (2008) Quantum Phase Estimation (QPE),
O(k?(A)log(N) /e

Ambainis (2012) Variable Time Amplitude Amplification (VTAA),
O(k(A)log(N)/e3

Childs, Kothari, Somma (2017) LCU, Chebyshev approximation,
O(r(A)log(N)poly log(1/z)

Subasi, Somma, Orsucci (2018) Adiabatic Quantum Computing
(AQC), O(r(A)log(N)/e)

An and Lin (2019) Time-optimal Adiabatic Quantum Approach (AQC),
O(k(A)log(N)/e)



Harrow, Hasidim, and Lloyd (HHL) Algorithm
[Harrow et al., 2009]

Goal: prepare a quantum state |x) whose amplitudes are equal to the
elements of the vector x that solves Ax = b for symmetric positive definite
A

@ the first quantum algorithm for solving QLSP,

@ gives a scalar measurement on the solution vector, instead of the
values of the solution vector itself,
e implements a 1/x(A)-approximation to the initial state,

e its complexity is ~ (k(A) /), i.e., O(k2log(N)/e),

Consider the eigendecomposition of a sparse, nonsingular A with
k(A) < o0, i.e.,
Alvj) =Xjlvj),j=0,....,N—1,

with eigenvalues 0 < A\g < A1 < ...Ay—1 < 1 having an exact d-bit
representation.



HHL Procedure

Step 1 Use Hamiltonian simulation technique to transform matrix A
into a unitary operator U = €™ that can be applied to |b),
i.e.,
if |b) = |v;) then QPE can be applied to implement

Uqpe |07} 1) = A} ).

N-1
else expand the input state |b) = > f;|v;) and
j=0
N—1
Uqpe [09) 1) = D 6 1A 1v)

-
Il
o



Step 2 Since the unnormalized solution satisfies

A~|b) = (ZA vj) wl)(ZBJIVJ>=ZBJIVJ>

j=0

we will need to use the information on the eigenvalues | ;)
stored in the ancilla register and perform a controlled
rotation to multiply the factor )\J-_l to each f;.



Example Quantum Eigenvalue Problem

Classical Eigenvalue Problem: Given an nonsingular (Hermitian for
simplicity) N x N matrix A and vector of size N find A € R and a nonzero
vector x € RN such that

Ax = Xx.

Example Quantum Eigenvalue Problem: Given a Hamiltonian
T-1

H= Z a;Pj, where a; € Ry, >~ «a; =1, P; are Pauli operators and
i=0

T = (’)(poly( )), find (prepare) a ground state |x) such that
H|Y) = Eoly),

where [¢)) is a ground state (state corresponding to the lowest energy Eo.



Quantum Subspace Diagonalization
(QSD) [Cortes and Gray, 2022b, Epperly et al., 2022]

Given a set of states
{Jx) = Ug o), k=0,1,2,...,D—1} (11)

that can be prepared on a quantum computer by quantum circuits Uy, we
project the Hamiltonian H onto the D-dimensional Hilbert space

span{[k) = Uk [to) . k = 0,1,2,...,D— 1}, i,

Hj; = = (il HWJ> (1o U*HU [00) 5

(12)
U - <¢/ | ¢J> - <1/)0‘ U,- UJ W}O)
Then, having estimated H and S, we classically solve the generalized
eigenvalue problem (GEVP)
Hv = 4Sv (13)

and find the lowest eigenvalue p, variational estimate of the ground state
energy.



Remark 12
@ S is the overlap (Gram) matrix of the states (11),
@ H and S can be estimated by repeated SWAP or Hadamard tests,

e generalized eigenvalue problem (13) needs to be regularized due to
ill-conditioning of S with growing D.




Classical Lanczos Method

Input: Hamiltonian H and initial guess |¢)
= H o) = --- = HP T yo)
(H,S) = project H onto span

{ o) s H [0} s H2 o) .. HO aio) }

KryIO\‘/,space
Output: Lowest eigenvalue of (H,S) (Ritz value), i.e., Hv = pSv,
approximates lowest eigenvalue of H

Advantages:

@ Exponential convergence with respect to D (in infinite precision
arithmetic).

Disadvantages:

@ Requires storing Krylov basis vectors, H* [1)9) exponential overhead
(cost of classically representing vectors).



Is it possible to design a quantum version that reduces
statevector overhead while maintaining rapid convergence?



Towards Quantum Lanczos

Several quantum methods have been proposed to adapt the Lanczos
algorithm:

imaginary time evolution approaches: Quantum Lanczos
(QLanczos) [Motta et al., 2020],

real time evolution approaches : Quantum Filter Diagonalization
(QFD) [Parrish and McMahon, 2019, Stair et al., 2020,
Cohn et al., 2021],
[Cortes and Gray, 2022a, Klymko et al., 2022],

linear combinations of time evolutions: Quantum Power

Method [Seki and Yunoki, 2021] approximates powers of H
via linear combinations of time-evolved states.

@ All these methods converge to the classical Lanczos algorithm in
specific limits.

@ However, both real and imaginary time evolution require
approximations.



Truly Quantum Lanczos [Kirby et al., 2023]

A quantum algorithm that produces exactly the same Krylov
space as the one used in the classical Lanczos method (up to finite
sampling noise).

Focuses on Hamiltonians encoded as linear combinations of
Pauli operators, which simplifies the measurement scheme, however,
the method is generalizable to other block encodings.

The Krylov basis vectors are defined using Chebyshev polynomials:
l) = Te(H)|tho) for k=0,1,...,D—1.

Since Chebyshev polynomials span the same space as powers of
H, we have:

span{ Tk(H)[vo)} = span{H"[¢0)}.
The quantum subspace diagonalization (QSD) approach can find
the lowest-energy state in this Krylov subspace.

Thus, using Chebyshev polynomials yields performance equivalent
to powers of the Hamiltonian, up to finite sample noise.



QSD step in Quantum Lanczos

D

To diagonalize H projected onto subspace span{ Tx(H)|t0)} ¢~ . we need

to estimate

Hjj = (Yol Ti(H)HT;(H) [¢0),  Sij := (ol Ti(H) Tj(H) |tho)

on quantum computer for i,j =0,1,2,...,D — 1, then solve a generalized
eigenvalue problem
Hv = uSv.

Using the block encodings of Tx(#)|v0), the properties of Chebyshev
polynomials and denoting by (-), expectation value with respect to the
initial state [¢)9) we get:

Hj = (Ti(H)YHT;(H)), = % (<Ti+j+1(H)>o + (M- (M)

(T (H))g + (Timyai(H)),) -



S; = (T:(H)T;(H)), = (<Tf+j(”H)>o + <T\f—j\(7f)>o) ,

N —

fori,j=0,1,2,...,D—1.

Therefore, to construct matrices H and S, we only need to estimate all
expectation values

(Tk(H))o = (Wo| Tk(H) [to) for k=0,1,2,...,2D — 1.
Let us now recall the Definition 6 of the standard form

(<G’a®|s)UH(‘G>a®|s):H' (14)

and our simple n-qubit Hamiltonian expressed as a linear combination of
Pauli operators P;, i=1,..., T, T = O(poly(n)), i.e.,



Block-Encoding and Implementation of the Unitary Then the
block-encoding Uy of the Hamiltonian H is given as

T-1

Up = |0, (il,® Ps.

i=0

o Apply P,.(j) (the jt single-qubit Pauli operator in P; ) to system qubit
J, controlled on the auxiliary qubits being in state | i), .

@ As P; is an n-qubit Pauli operator, implementing Uy requires
applying at most nT single-qubit Pauli operators, each controlled on
all of the auxiliary qubits.

Block-encoding and Preparation Procedure for the State

We can use any existing state preparation procedures for |G), = G|0),
since there are only logarithmically-many auxiliary qubits, so it is efficient.



Getting (T,(H)), from (Uy, G)

Lemma 13 (Chebyshev polynomials from block-encoding
[Kirby et al., 2023])

Given (Uy, G) of a Hamiltonian H, such that U3, =1, let
R:=(2/G).(G|,— ) ®Is.

be the reflection around |G), in the auxiliary space. Then

({61, @ 1) (RU)“(16)s @ 15) = Ti(H) .

for any k =0,1,2,..., where T(-) is the kth Chebyshev polynomial of the
first kind, i.e., (RUy)¥ is a block encoding of T, (H).

v







e Given a block-encoding (Uy, G) of a Hamiltonian #, Lemma 13
leads to:

(Ti(M))o = ((Gla @ (to]) (RU)*(|G)a ® [v0))

@ Since R is a Hermitian reflection about |G),, the expression
simplifies:

(Tk(H))o = ((Gla ® (vol) URUYH(|G)a @ |th0)).

@ The operator (Uy(RUp) 1) can be rewritten based on the parity of
k:

Uy(RUp) 1 = (UnR)*/>R(RUp)*/? if k is even
(UnR)472Uy(RUR) 92 if K is odd.



Hence, defining the state

[¥12)) = (RUH2L(1G), @ [¢h0),
and its adjoint

(W2 | = ((61,® (wol) (UR) 2

yields

R if ki
(Te(H))g = (k21 IRV [k/2)) f K is even,
(V1k/2/[URH[Y k/2)) i K is odd.



Measurement Procedure

© State preparation: Prepare |¢|,/2|) by applying RU | k/2| times to
|G>a ® WO>
@ If k is even (measure R):
o Apply G to undo G.
e Measure observable 2|0),(0], — 1 on the auxiliary qubits.
o Return +1 if all auxiliary qubits are measured as |0); otherwise return
-1
@ If k is odd (measure U):
o Decompose U =3, |i)s(ila ® P;.
e Measure auxiliary qubits in the computational basis.

o If the result is |i),, measure system qubits in the Pauli basis P;;
otherwise return 0.

© Repeat steps 1-3 until enough statistics are collected to estimate the
expectation value to the desired precision.



k/2 times

——————— - ~

0)a ; :
even k: /“ : :
N 1
|tbo) i I
=
Prep block-encoding Rotate to local Pauli
state lk/2] times basis

1
0)a
odd k:

Prepare |'¥;) Measure R or U

[0)

Figure 14: [Kirby et al., 2023]



Summary of Requirements and Costs

Block Encoding (Uy, G): for n qubits and T Hamiltonian terms:

@ Cost of Uy: nT
@ Cost of G: 2T
@ Cost of R: 4T

All in [logy T |-controlled single-qubit gates

Measurement Overhead: depends on the target precision and the
classical methods used to regularize and solver the
generalized eigenvalue problem

State Preparation: e Prepare |G), ® |1)o)
o Apply up to D — 1 layers of RUy
@ Measure either in Pauli basis or apply G' then measure
@ Longest sequence uses (D — 1)nT +4DT
[log, T|-controlled single-qubit gates.

Qubit Requirements: @ system qubits for |1g) (those that # acts on),
@ auxiliary qubits for |G),: can be [log, T if Hamiltonian
has T terms



Error Analysis of Quantum Lanczos

Error scaling subject to:

o finite sample noise, i.e., matrix elements are obtained from
expectations values estimated by repeated measurements)

@ devise noise, when executing the algorithm on a real quantum
computer,

@ regularization of the overlap matrix S, stability issues, condition
number of S grows exponentialy with the Krylov space dimension D



Ground State Energy Estimate

Theorem 14 (Theorem 1, [Kirby et al.,

2023])

The error in the ground state energy estimate coming from the regularized

problem ...

& <O((D*

is bounded by

1
\fetotal Y S
7ol?

)1+a 4 —=2
10l

with

0<a<1)2

6>0
e>0

€total

Y0

noise rate,

constant (v = 1/4 [Epperly et al., 2022] and

a = 0 [Kirby et al., 2023]),

constant,

threshold for regularization,

sum of the eigenvalues of S discarded by regularization,

overlap of the initial reference state [¢)g) with the true
grounds state |Ep), vo = (Eo|to).




1 5\ P
E<O( + + +h2<1+2> )
0

Term 4 error due to exact Krylov space, vanishes exponentially with
the Krylov space dimension D,



0
2

£<O( + +5+1<1+>_D)

Term 4

Term 3

2
0]

error due to exact Krylov space, vanishes exponentially with
the Krylov space dimension D,

energy error tolerance, determines the rate of exponential
decay of aplitudes of energies more than § above the ground
state, if § =~ A(spectral gap) this term can be removed,
otherwise the approximated state in general will not be a
ground state, but an arbitrary state in the low energy
subspae within § distance of the ground state energy,



£<0( +—F+i+—

Term 4

Term 3

Term 2

1+

Viewotal . 1 ( g>_D)

2
0]

Yo

error due to exact Krylov space, vanishes exponentially with
the Krylov space dimension D,

energy error tolerance, determines the rate of exponential
decay of aplitudes of energies more than § above the ground
state, if § =~ A(spectral gap) this term can be removed,
otherwise the approximated state in general will not be a
ground state, but an arbitrary state in the low energy
subspae within § distance of the ground state energy,

error due to regularization of (H,S) by ¢, i.e., discarding
eigenspaces of S with eigenvalues smaller than e,



-D
ESO((D4)1*“+\[t°w'+O+ ! <1+5> )
7ol? 2

Term 4

Term 3

Term 2

Term 1

Yo

error due to exact Krylov space, vanishes exponentially with
the Krylov space dimension D,

energy error tolerance, determines the rate of exponential
decay of aplitudes of energies more than § above the ground
state, if § =~ A(spectral gap) this term can be removed,
otherwise the approximated state in general will not be a
ground state, but an arbitrary state in the low energy
subspae within § distance of the ground state energy,

error due to regularization of (H,S) by ¢, i.e., discarding
eigenspaces of S with eigenvalues smaller than e,

factor D¥a comes from the proof
technique [Epperly et al., 2022].



Actuall Error Bound

To reach energy error £ we require:

Krylov space dimension: D = © [(Iog ﬁ + log %) min (£, %)] (is also
a maximum circuit depth in terms of queries to the
block-encoding operator).

Total number of measurements: M = © (D(é + ﬁ)) )
0



Summary of [Kirby et al., 2023] Quantum Lanczos

@ uses block encoding to exactly reproduce the Krylov space of the
classical Lanczos method on quantum computer,

@ this quantum algorithm achieves it in polynomial time and
memory,

e resulting Krylov space (although not represented with orthogonal
basis) is identical to the one generated by the Lanczos method (up to
finite sample noise),

o this algorithm does not require simulating real or imaginary time
evolution,

e explicit error bounds in the presence of noise,

@ requires Q(1/poly(n)) overlap between initial state and the true
ground state for n qubits,

@ it requires one local basis rotation per circuit in addition to the
block encoding unitaries.



Thank you very much for your attention.

4

Questions?
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