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Nature isn’t classical, dammit, and if you want to make a
simulation of Nature, you’d better make it quantum

mechanical, and by golly it’s a wonderful problem because
it doesn’t look so easy.

Richard Feynman, 1981 lecture on Simulating physics with computers.

Figure 1: Credit: Britannica.
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Prerequisites

Figure 2: Credit: Amazon

If you have questions, please ask Lucie offline!



A Bit of Early History in Nutshell

Manin, Feymann and Benioff (early 1980s) on analog quantum
computer and computational power beyond that of
traditional computations.

Deutsch (1985) the universal quantum Turing machine.

Figure 3: Credit: Wikipedia.

Deutsch and Jozsa (1992) one of the first quantum algorithm that is
exponentially faster than any possible deterministic classical
algorithm, i.e., given an oracle that implements
f : {0, 1}n → {0, 1} determine if f is constant or balanced.

Bernstein and Vazirani (1993) quantum complexity theory.



Simon (1994) a polynomial-time algorithm for a quantum computer that
distinguishes between two classes of polynomial-time
computable function, i.e., exponential quantum speedup for
finding the period of a 2 to 1 function.

Shor (1994) efficient quantum algorithms for the problems of integer
factorization and discrete logarithms.

Figure 4: Credit: Wikipedia.

Google (2019) "quantum supremacy" experiment on 53 qubits.

Figure 5: Credit: Google.



The Four Main Postulates of Quantum Mechanics

1. State Space Postulate

A quantum state |ψ〉 ∈ H is a superposition of classical states,
written as a vector of amplitudes, to which we can apply either a
measurement or a unitary operation.

Figure 6: Credit: Deep Learning University, Qiskit Tutorial, 2025



We use Dirac notation, i.e.,

|·〉 ket: a column vector |ψ〉 =


ψ0
ψ1
...

ψN−1

 ,
〈·| bra: a row vector, Hermitian conjugation of a quantum state

|ψ〉 ∈ H

〈ψ| = |ψ〉∗ =
[
ψ0 ψ1 . . . ψN−1

]
,

〈·|·〉 braket: inner product 〈ψ|φ〉

〈ψ|φ〉 = (ψ, φ) ∈ C.

We will always assume that |ψ〉 is normalized, i.e., 〈ψ|ψ〉 = 1. Hence,
H ∼= CN/‖ · ‖2.



The set of all quantum states of a quantum system forms a complex
vector space with inner product (Hilbert space denoted as H), called
the state space.

If H is finite dimensional it is isomorphic to some CN .

W.l.o.g we can take H = CN , where N = 2n, n ∈ Z+ is called the
number of quantum bits (qubits).

Figure 7: Credit: Deep Learning University, Qiskit Tutorial, 2025



Example (Single Qubit System)

H ∼= CN/‖ · ‖2

|0〉 =
[
1
0

]
(spin-up), |1〉 =

[
0
1

]
(spin-down)

plot_bloch_vector([0, 0, 1], title="Bloch Sphere for state |0>")
plot_bloch_vector([0, 0, -1], title="Bloch Sphere for state |1>")



Probabilities on Measurements

|ψ〉 = a |0〉+ b |1〉 =
[
a
b

]
∈ H.

plot_bloch_vector([-1, 0, 0], ...
title="Bloch Sphere for state |- > = 1/sqrt(2)|0> - 1/sqrt(2)|1>")

Normalization condition implies |a|2 + |b|2 = 1.
If we perform a measurement we will get |0〉 with probability |a|2 and |1〉
with probability |b|2.



Example
Let us calculate the probabilities of measuring 0 and 1 upon measurement
of a qubit in the state |ψ〉 = 1√

2 |0〉+
1√
2 |1〉. The probability of obtaining

0 on measurement is given as

p(0) =
∣∣∣∣ 1√

2

∣∣∣∣2 =

(
1√
2

)2
=

1
2 .

Similarly, the probability of obtaining 1 on measurement can be calculated
as

p(1) =
∣∣∣∣ 1√

2

∣∣∣∣2 =

(
1√
2

)2
=

1
2 .

Since both coefficients for |0〉 and |1〉 are equal, the probabilities of
obtaining 0 and 1 on measurement are the same. Also the resulting
probabilities of measuring 0 and 1 add up to 1, as they should.



|x , y〉 represents Kronecker product of |x〉 and |y〉, which can also
be written as |x〉 |y〉 or |xy〉.

Kronecker product of m |0〉’s is denoted by |0m〉 or |0〉⊗m.

IN denotes the N × N identity matrix.

The jth column of matrix IN is denoted by |j〉 for j = 0, 1, . . . ,N − 1.

The binary representation of j ∈ N, 0 ≤ j ≤ 2n − 1 is given by

j = [jn−1 . . . j1 j0] = jn−1 · 2n−1 + . . .+ j1 · 21 + j0 · 20.



2. Quantum Operator Postulate

The evolution of a quantum state from |ψ〉 to |ψ′〉 is always achieved
via a unitary operator U ∈ CN × CN , i.e.,∣∣ψ′〉 = U |ψ〉 , U∗U = IN .

In quantum computation, a unitary matrix (operator) is referred as a
gate.
An operator acting on an n-qubit quantum state space H is called
n-qubit operator.



Example (Single Qubit Operators)

Hadamard H =
1√
2

[
1 1
1 −1

]
Pauli matrices

σx = X =

[
0 1
1 0

]
, σy = Y =

[
0 −ı
−ı 0

]
, σz = Z =

[
1 0
0 −1

]

Rotation along Pauli-Y axis Ry (θ) =

[
cos θ2 − sin θ

2
sin θ

2 cos θ2

]
= e−ıθY /2

Phase S =

[
1 0
0 ı

]



Two-Qubit Operators

controlled not (CNOT) CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



SWAP SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1





3. Quantum Measurement Postulate (Projective Measurement)

If we measure quantum state |ψ〉, we cannot "see" superposition.
We only can get a classical state |j〉, j = 0, . . . ,N − 1.

Figure 8: Credit: Deep Learning University, Qiskit Tutorial, 2025

We do not know in advance which |j〉 we get, we only know the
probability |αj |2 of observing |j〉 (Born’s rule).



If we measure |ψ〉 and get j = 0, then state |ψ〉 disappears, and all
that is left is |j〉, i.e., observing the state |ψ〉 "collapses" it to the
classical state |j〉.
Quantum observables (in finite dimension) always correspond to a
Hermitian matrix with spectral decomposition

M =
∑

m
λmPm, with λm ∈ R and P2

m = Pm.

The outcome of a measurement of a quantum state |ψ〉 by a
quantum observable M is an eigenvalue λm with probability
pm = 〈ψ|Pm |ψ〉. After the measurement

|ψ〉 → Pm |ψ〉
√pm

.

However, this is not a unitary process.
The expectation value of the measurement outcome is

Eψ(M) = 〈ψ|M |ψ〉 .



4. Tensor Product Postulate

An element (quantum state) in the n-qubit state space
H = (C2)⊗n ∼= C2n can be written as

|ψ〉 =
2n−1∑
j=0

αj |j〉 ,

where single qubit states |j〉 , 0 ≤ j ≤ 2n − 1 are orthonormal basis of
H. A complex number αj is called the amplitude of |j〉 in |ψ〉.
If ψ ∈ C2n , we can use the following notation

|ψ〉 = |ψ0〉 ⊗ |ψ1〉 ⊗ . . .⊗ |ψm−1〉
≡ |ψ0ψ1 . . . ψm−1〉 ≡ |ψ0, ψ1, · · · , ψm−1〉
≡ |ψ0〉 |ψ1〉 . . . |ψm−1〉 . (1)

ψ ∈
{

0, 1
}n is called a classical bit-string and |ψ〉 , ψ ∈

{
0, 1
}n the

computational basis of C2n .



Example (Two Qubit System)
The state space of two qubit system is H = (C2)⊗2 ∼= C4 with standard
basis

|00〉 =


1
0
0
0

 , |01〉 =


0
1
0
0

 , |10〉 =


0
0
1
0

 , |11〉 =


0
0
0
1

 .
If a quantum state |ψ〉 has m components with state spaces

{
Hi
}m−1

i=0 , its
state space is a tensor product denoted by H = ⊗m−1

i=0 Hi and

|ψ〉 = |ψ0〉 ⊗ |ψ1〉 ⊗ · · · ⊗ |ψm−1〉 , where |ψi〉 ∈ Hi .

However, not all quantum states in H can be written in this form, e.g., the
Bell state (the EPR pair)

|ψ〉 = 1√
2
(
|00〉+ |11〉

)
=

1√
2


1
0
0
1

 .



Quantum Circuits

System registers (signal qubits): storing quantum states of interest.

Ancilla registers (ancilla qubits): auxiliary registers needed to
implement the unitary operation acting on system registers.



Example Quantum Circuits

Pauli X gate X X |0〉 = |1〉

|0〉 |1〉

|0〉 |0〉

X
(X ⊗ I) |00〉 = |10〉

Hadamard gate H H
(

1√
3 |0〉+

√
2
3 |1〉

)
=

[
0.986
−0.169

]

CNOT gate
|a〉 |a〉

|b〉 |a ⊗ b〉
CNOT |00〉 = |10〉

SWAP gate
|a〉 |b〉

|b〉 |a〉
SWAP |10〉 = |01〉
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QuantNLA: Expectations and Restrictions
Quantum computers are known to provide exponential quantum
speedups for some problems, so it is natural to understand what they
can do in linear algebra problems.
Typical cost of classical algorithm for N-dimensional system is
poly(N) vs. expected O(poly log(N)) cost for quantum
algorithms.

No-cloning Theorem (Wootters & Zurek, Dieks 1982)
Consider two quantum systems S1 and S2 with a common Hilbert space
H = HS1 = HS2 . There is no unitary operator U on H⊗H such that for
all normalized states |ψ〉S1

and |e〉S2
in H

U
(
|ψ〉S1

|e〉S2

)
= eıα |ψ〉S1

|ψ〉S2
,

where α depends on |ψ〉 and |e〉.

forbids generic quantum copy operation,
all classical iterative algorithms are not feasible for quantum
computing as they require storing intermediate information.



Two exceptions of the No-cloning Theorem
If we know how a quantum state is prepared, i.e., |ψ〉 = Uψ |φ〉 for a
known unitary Uψ and some |φ〉, then we can copy |ψ〉 via

(I ⊗ Uψ) |ψ〉 ⊗ |φ〉 = |ψ〉 ⊗ |ψ〉 .

CNOT gate enables copying classical information, i.e.,

CNOT |ψ, 0〉 = |ψ,ψ〉 , ψ ∈ {0, 1}.

However, it can not be used to copy a superposition of classical bits
|ψ〉 = a |0〉+ b |1〉, i.e.,

CNOT |ψ〉 ⊗ |0〉 = a |00〉+ b |11〉 6= |ψ〉 ⊗ |ψ〉 .

No-deleting Theorem
There is no unitary operator U such that

U |0n〉 ⊗ |x〉 = |0n〉 ⊗ |0n〉 .

given two copies of a quantum state it is impossible to remove one
copy (consequence of No-cloning Theorem).



The Problem of the Input Model
How to get information in a vector v ∈ CN or a matrix A ∈ CN×N into the

quantum computer?

Input Model for Vectors in CN

The n-qubit quantum state |ψ〉 can be viewed as
N = 2n-dimensional vector normalized under 2-norm (some
information may be lost).
The cost of storing n-qubit quantum state is ∼ N.

Black-box quantum state preparation (state preparation oracle)
Goal: Construct an n-qubit state |ψ〉 given as a (quantum) oracle

Uψ : |0〉 → |ψ〉 =
2n−1∑
j=0

ψj |j〉 .

Amplitudes ψj are unknown a priori and can only be accessed through
an oracle or black-box.
Each amplitude ψj is encoded with n-bit precision.
The oracle Uψ can be invoked, as required, with complexity O(1).



Quantum State Preparation Algorithms

Grover and Rudolph (2002) given a certain probability distribution
{pj}, how to efficiently create a quantum superposition
|ψ〉 =

∑
j

pj |j〉.

Sun et al. (2021) asymptotically optimal circuit depth for quantum
state preparation, Θ(2n/n) (no ancillary qubits), Θ(n) (with
O(2n) ancillary qubits).

Araujo et al. (2021) asymptotically optimal circuit depth for quantum
state preparation Θ(n) (with Õ(2n) ancillary qubits).

Rosenthal (2022) asymptotically optimal circuit depth for quantum state
preparation Θ(n) (with Õ(2n) ancillary qubits).



Zhang, Li and Yuan (2023) any n-qubit quantum state can be prepared
with a Θ(n)-depth circuit using only single- and two-qubit
gates (with O(2n) ancillary qubits). For sparse quantum
states with d > 2 nonzero entries, circuit depth to
Θ(log(nd)) with O(nd log(d)) ancillary qubits.

Laneve (2023) quantum state preparation using quantum signal
processing (QSP) and quantum singular value transform
(QSVT) within error ε in time O(

√
γT (n)log(1/ε)) and

d2 + log2(6/εγ)e additional qubits, where O(T (n)) is time
for amplitude computations and √

γ is an inverse polynomial
in n.



Block-Encoding (BE) = Input Model for Matrices

Step 1: embed a (non-unitary) matrix A, ‖A‖2 ≤ α into a unitary
matrix UA of larger size (after appropriate scaling), i.e.,

UA =

[ 1
αA ∗
∗ ∗

]
,

Step 2: convert unitary UA into a quantum circuit (express UA as a
product of simpler unitaries) to allow computation on
quantum computer.

|0m〉

|j〉
UA

Figure 9: Circuit for General Block-encoding of A.

Such an encoding is useful if UA can be implemented efficiently.



Definition 1 (Block-encoding
(BE) [Chakraborty et al., 2019, Camps et al., 2024])

Given an n-qubit matrix A (A is of size N × N with N = 2n), if we can
find α, ε ∈ R+, and an (m + n)-qubit unitary matrix UA (UA is of size
2n+m × 2n+m) such that

‖A − α
(
〈0|⊗m ⊗ In

)
UA
(
|0〉⊗m ⊗ In

)
‖2 ≤ ε,

then UA is called an (α,m, ε)-block-encoding of A. If the block-encoding
is exact with ε = 0, UA is called an (α,m)-block-encoding of A.

Here α is the block-encoding factor (subnormalization factor) that satisfies
α ≥ ‖A‖ and m is the number of ancilla qubits used to block encode A.

Simple check using matrix form:

Since 〈0m| ⊗ In =
[
In 0

]
and |0m〉 ⊗ In =

[
In
0

]
, then

α
(
〈0|⊗m ⊗ In

)
UA
(
|0〉⊗m ⊗ In

)
= α

[
In 0

] [A
α ∗
∗ ∗

] [
In
0

]
= A.



Block-Encoding: Existence and Uniqueness

Theorem 2 (Existence of BE [Alber et al., 2003])

Every non-unitary matrix A can be embeded in a (‖A‖2, 1)-block-encoding.

Proof: W.lo.g. assume that ‖A‖ ≤ 1 (otherwise consider A
α ). Consider

Singular Value Decomposition (SVD) of matrix A, i.e., A = W˚V∗ (all
σj ∈ [0, 1]). Then

UA =

[
W

In

] [
Σ

√
In − ˚2√

In − ˚2 −˚

] [
V∗

In

]

=

[
A W

√
In − ˚2√

In − ˚2V∗ −˚

]
.



Some Simple Block-Encodings

"tivial" example Let U be a unitary matrix, then U is a
(1, 0, 0)-block-encoding of itself.

a scalar 0 < α < 1 Let A = α ∈ C1×1. Then a block-encoding of A
can be constructed as

UA =

[
α

√
1 − α2

√
1 − α2 −α

]
or UA =

[
α −

√
1 − α2

√
1 − α2 α

]
.

Remark 3
This answers the uniqueness question.



‖A‖2 ≤ 1 Then a block-encoding of A can be constructed as

UA =

[
A

√
I − A∗A√

I − A∗A −A

]
or UA =

[
A

√
I − A∗A√

I − A∗A A

]
(2)

Existence is not all

This block-encoding requires computing the square root of A∗A which
cannot be done efficiently on quantum computer using O(poly(n))
quantum gates. Theorem 2 does not guarantee the existence of an
efficient quantum circuit implementation.



Some Good News [Camps et al., 2024]

2 × 2 symmetric matrix Let us consider A = 1
2

(
α1 α2
α2 α1

)
, with

0 ≤ |α1| , |α2| ≤ 1. Then a block-encoding of A can be constructed as

UA =
1
2

[
Uα −Uβ

Uβ Uα

]
,

where

Uα =


α1 α2 α1 −α2
α2 α1 −α2 α1
α1 −α2 α1 α2
−α2 α1 α2 α1

 and Uβ =


β1 β2 β1 −β2
β2 β1 −β2 β1
β1 −β2 β1 β2
−β2 β1 β2 β1

 ,
with β1 =

√
1 − α2

1 and β2 =
√

1 − α2
2.



Define φ1 = arccos (α1) + arccos (α2) and φ2 = arccos (α1)− arccos (α2),
then the block encoding UA can be factored as a product of simpler
unitaries, i.e.,

UA = U6U5U4U3U2U1U0,

where

U0 = U6 = I2 ⊗ H ⊗ I2,
U1 = R1 ⊗ I2 ⊗ I2,
U2 = U4 = (I2 ⊗ E0 + X ⊗ E1)⊗ I2,
U3 = R2 ⊗ I2 ⊗ I2,
U5 = I2 ⊗ (E0 ⊗ I2 + E1 ⊗ X ),

with
H,X the Hadamard and Pauli- X gates, respectively,

R1,R2 rotation matrices R1 = Ry (φ1), R2 = Ry (φ2), and
E0,E1 projectors, i.e., E0 = e0eT

0 = |0〉 〈0| , E1 = e1eT
1 = |1〉 〈1|.



The quantum circuit associated with the factorization is given as

|0〉

|0〉

|j〉

R1 R2

H H

Figure 10: Circuit for General Block-encoding of a 2 × 2 symmetric matrix A.

Remark 4
Note that the unitary that block encodes the 2 × 2 matrix A is of
dimension 23, i.e., 2 ancilla qubits in addition to the n = 1 system qubit
required to match the dimension of A, which is N = 2n. It is twice the
dimension of the block encoding given through (2) (one using square root
of A∗A).



Some Good News = Block-Encoding in Practice
Block-encoding of a general matrix is hard, however, there are some
success stories:
sparse matrices: based on "query oracles" giving the position and binary

description of matrix entries [Berry et al., 2015b,
Gilyén et al., 2019, Childs et al., 2017], specific 2n × 2n in
poly(n) complexity [Camps et al., 2024],

quantum walks on highly-structured graphs:
[Szegedy, 2004, Childs, 2010, Loke and Wang, 2017],

structured matrices: [Sünderhauf et al., 2024],
dense and full-rank kernels: using hierarchical

matrices [Nguyen et al., 2022],
pseudo-differential operators: efficient and explicit BE

algorithm [Li et al., 2023],
pairing Hamiltonian: [Liu et al., 2025].

. . .



State-of-the-art for sparse A
Assume that A is a s-sparse matrix with ‖A‖ ≤ 1.

encode the position and the numerical value of the nonzero matrix
elements through the following oracles, i.e.,

Orow |j , nz〉 = |j , row(j , nz)〉
Ocol |j , nz〉 = |j , col(j , nz)〉
OA|j , k, z〉 = |j , k, z ⊕ Ajk(t)〉 ,

where row(j , nz) is the row index of the nz th nonzero element in the
j th column, col(j , nz) is the column index of the nz th nonzero element
in the jthrow, with j ∈ 1, . . . ,N and
nz ∈ 1, . . . , s [Berry and Childs, 2009, Childs et al., 2017].

combine these query oracles into matrix query oracle [Lin, 2022] to
enable access to the matrix data.

A (s, n + 3, ε)-block-encoding of A can be constructed via O(1) queries
to above oracles and O

(
n + log5/2(s/ε) primitive gates.



Fast Approximate BLock-Encodings
(FABLE) [Camps and Van Beeumen, 2022]

Fast Approximate BLock-Encodings (FABLE)
[Camps and Van Beeumen, 2020, Camps and Van Beeumen, 2022]
generates quantum circuits that block encode arbitrary matrices up
to prescribed accuracy,
defines a matrix query operation OA for a given matrix A which is
then synthesized in a quantum circuit.

Definition 5 (Matrix Query Operation OA)
Let A = [aij ], i , j = 1, . . . ,N, with N = 2n and ‖aij‖ ≤ 1. Then the matrix
query operation OA applies

OA |0〉 |i〉 |j〉 =
(
aij |0〉+

√
1 − |aij |2 |1〉

)
|i〉 |j〉 ,

where |i〉 and |j〉 are n-qubit computational basis states.



High-level Quantum Circuit

|0〉

|0〉⊗n

|ψ〉 A|ψ〉
‖A|ψ〉‖

OAH⊗n H⊗n

Figure 11: High-level quantum circuit structure for FABLE block-encoding a matrix A in terms
of a matrix query oracle OA.

all information about the matrix are encoded in a single matrix
query oracle which can be implemented with simple one-qubit Ry
and Rz rotations, two-qubit CNOT gates, and some additional
Hadamard and SWAP gates
the gate complexity of a FABLE circuit for general, unstructured
N × N matrix is bounded by O(N2) (with prefactor 2 for real and 4
for complex matrices) plus limited polylogarithmic overhead.



Let us verify that the circuit UA in Figure (11) is indeed an (1/2n, n + 1)
encoding of an n-qubit matrix A, i.e., satisfies Definition 1.
The circuit UA can be written in matrix notation as

UA = (I1 ⊗ H⊗n ⊗ In)(I1 ⊗ SWAP)OA(I1 ⊗ H⊗nIn).

For UA to satisfy Definition 1 we need

〈0|
〈

0|⊗n 〈i |UA | 0
〉
|0〉⊗n|j〉 = 1

2n aij .

First, we have

|0〉|0〉⊗n|j〉 H⊗n
−−→ 1√

2n

2n−1∑
k=0

|0〉|k〉|j〉,

OA−−→ 1√
2n

2n−1∑
k=0

(
akj |0〉+

√
1 − |akj |2|1〉

)
|k〉|j〉,

SWAP−−−−−→ 1√
2n

2n−1∑
k=0

(
akj |0〉+

√
1 − |akj |2|1〉

)
|j〉|k〉.



Similarily,

|0〉|0〉⊗n|i〉 H⊗n
−−→ 1√

2n

2n−1∑
`=0

|0〉|`〉|i〉.

Now combining both, yields

〈0|
〈

0|⊗n 〈i |UA|0〉|0〉⊗n|j〉

=
1
2n

(2n−1∑
`=0

〈0|〈`|〈i |
)

(2n−1∑
k=0

(
akj |0〉+

√
1 − |akj |2|1〉

)
|j〉|k〉

)
,

=
1
2n

2n−1∑
`=0

2n−1∑
k=0

akj〈` | j〉〈i | k〉

=
1
2n aij .

which completes the proof.



A ∈ RN×N For given row and column indices i and j ,OA acts on the |0〉
state of the first qubit as an Ry gate with angle θij = arccos (aij), i.e.,

Ry (2θij) |0〉 =
[
cos (θij) − sin (θij)
sin (θij) cos (θij)

] [
1
0

]
=

[
aij√

1 − a2
ij

]
Hence, the matrix query unitary OA for a real-valued matrix is a matrix
with the following structure

OA =



c00 −s00
c01

. . .
cN−1,N−1

s00 c00 −sN−1,N−1
s01 c01

. . . . . .
sN−1,N−1 cN−1,N−1


,

where cij := cos (θij) and sij := sin (θij).
For details see
[Camps and Van Beeumen, 2020, Camps and Van Beeumen, 2022].



Block encoding = Standard-Form Encoding

Definition 6 (Standard-form Encoding [Low and Chuang, 2019])

A signal operator H (acting on a Hilbert space Hs whose states are
denoted |·〉s) with spectral norm ‖H‖ ≤ 1 is encoded in the standard-form
if we may query a unitary oracle U : Ha ⊗Hs → Ha ⊗Hs (for some
auxiliary Hilbert space Ha whose states are denoted |·〉a) and a unitary
state preparation oracle |G〉a := G |0〉a ∈ Ha such that

(〈G |a ⊗ Is)U (|G〉a ⊗ Is) = A . (3)

A pair (U,G) is called a standard-form encoding of A. Here Is denotes
identity acting on Hs .

Remark 7
Note that choosing |G〉a := G |0〉a = |0〉⊗m immediately provides
equivalence with Definition 1.



Matrix-vector Product
Input: n-qubit quantum matrix A and quantum state |ψ〉
Step 1 Block-encode A, ‖A‖ ≤ 1, i.e.,

UA =

[ 1
αA ∗
∗ ∗

]
.

Step 2 Apply UA to an "extended" vector |0m, ψ〉 = |0m〉︸︷︷︸
ancilla

|ψ〉︸︷︷︸
system

=


ψ
0
...
0

, i.e.,

UA |0m, ψ〉 =
[ 1
αA ∗
∗ ∗

]
ψ
0
...
0

 =

[
Aψ
∗

]
=

[
Aψ
0

]
+

[
0
∗

]
= |0〉 |Aψ〉+ |1〉 |∗〉︸ ︷︷ ︸

unnormalized state

.

Step 3 "Get" the product A |ψ〉 by measuring the ancilla qubits

(|0〉 〈0| ⊗ I)(|0〉 |Aψ〉+ |1〉 |∗〉) = |0〉 |Aψ〉 .



Circuit for Matrix-vector Product

|0m〉

|ψ〉 A|ψ〉
‖A|ψ〉‖

UA

To obtain A |ψ〉, we need to measure the qubit 0 and only keep the
state if it returns 0.
Provided the outcome of the measurement on the first wire is |0m〉
then the output of the circuit is (‖A |ψ〉 ‖/α)2.
Need to measure the first ancilla qubit.
The success probability of this measurement is (‖A |ψ〉 ‖/α)2.



Quantum vs Classical Numerical Linear Algebra

Classical Quantum
State space N = 2n n

Space elements N-dimensional
vectors

n-qubit quantum state
(N-dimensional unit vector)

Cost O(poly(N)) O(poly log(N)) = O(poly(n))

Vectors
(entries)

, /
Matrices any unitary

Copying
information

, /
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The Quantum Fourier Transform (QFT)
Let ωN = e2πı/N be an N-th root of unity, i.e., ωN

N = 1. Then an N × N
unitary matrix

FN =
1√
N


...

· · · ωjk
N · · ·
...


is called the Fourier transform.

Since FN is unitary and symmetric, F−1
N = F ∗

N .

The naive way of computing the Fourier transform of v̂ = FNv of
vector v ∈ RN would take O(N2) steps.
A more practical way is through the Fast Fourier Transform [Cooley
and Tukey, 1965] as it takes only O(NlogN) steps.

As a unitary matrix FN can be interpreted as a quantum operation
(n-qubit unitary), i.e., mapping an N-dimensional vector of
amplitudes to another N-dimensional vector of amplitudes, and called
the quantum Fourier transform (QFT).



The QFT is an implementation of

UFT |j〉 = 1√
N

N−1∑
k=0

e2πı kj
N |k〉 ,

where N = 2n, using a quantum circuit with O(n2) elementary gates
(2-qubit SWAP and controlled rotation gates) and no ancilla quibits,
which is exponentially faster than the FFT.

The QFT provides only the amplitudes of the resulting states,
not directly the entries of the Fourier transform.

For more details check
[Coppersmith, 2002, Nielsen and Chuang, 2001,
Hales and Hallgren, 2000, Weinstein et al., 2001, Camps et al., 2021].



Linear Combination of Unitaries (LCUs) [Berry et al., 2015a]
Goal: given a few block-encoded matrices, we often need a block
encoding of their linear combination, i.e., given block encodings UA and
UB of two matrices A and B, respectively, a block encoding of A + B is
given by the circuit

|0〉

|ψ〉

H H

UA UB

Now suppose we wish to implement a unitary V that can be written as a
linear combination of many unitary gates Ui , i.e.,

V =
∑

i
aiUi ,

where the unitaries Ui are considered easy to perform in the model under
consideration (e.g., query complexity or gate complexity).



LCU Lemma [Kothari, 2014, Berry et al., 2015a]

Lemma 8 (Exact LCU Algorithm [Kothari, 2014])
Let V be a unitary matrix such that V =

∑
i∈I

aiUi is a linear combination

of unitary matrices Ui with ai > 0 for all i . Let A be a unitary matrix that
maps |0m〉 to 1√

a
∑
i

√ai |i〉, where a := ‖~a‖1 =
∑
i

ai . Then there exists a

quantum algorithm that performs the map V exactly with O(a) uses of A,
U :=

∑
i
|i〉〈i | ⊗ Ui , and their inverses.

Lemma 9 (Approximate LCU algorithm)

Let Ṽ be a matrix that is δ-close to some unitary in spectral norm, such
that Ṽ =

∑
i

aiUi is a linear combination of unitary matrices Ui with

ai > 0 for all i . Let A be a unitary matrix that maps |0m〉 to 1√
a
∑
i

√ai |i〉,

where a := ‖~a‖1 =
∑
i

ai . Then there exists a quantum algorithm that

performs the map Ṽ with error O(a
√
δ) and makes O(a) uses of

A,U :=
∑
i
|i〉〈i | ⊗ Ui , and their inverses.



From LCU Lemmma to Quantum Circuit

LCU [Berry et al., 2015a] We can get a
(‖c‖1, dlog2 Ke)-block-encoding using:

select oracle SEL :=
∑

i∈[K ]

|i〉〈i | ⊗ Ui

prepare oracle PREP |0〉 = 1√
‖c‖1

∑
i∈[K ]

√ci |i〉,

where K > 2m.
General LCBE [Gilyén et al., 2019] max

i
mi + dlog2 Ke ancillas.



The LCU lemma states that the number of ancilla qubits needed
depends algorithmically of the number of terms in the linear
combination of unitaries
Significant overhead in terms of the number of ancilla qubits needed,
procedure requires implementing a sequence of sophisticated
multi-qubit controlled-unitary operations (challenging for
intermediate-term quantum computers).
For implementing any Linear Combination of Unitaries
see [Chakraborty, 2024].



Quantum Phase Estimation (QPE) [Kitaev et al., 2002]
Task: Suppose we can apply a unitary U and we are given an eigenvector
|ψ〉 of U corresponding to the unknown eigenvalue λ. Our goal is to
compute or at least approximate the λ.

Quantum algorithm to estimate the phase corresponding to an
eigenvalue of a given unitary operator (eigenvalues of a unitary
operator have unit modulus, hence they are characterized by their
phase),
Algorithm that operates on two sets of qubits (registers) containing n
and d qubits, respectively,
We assume oracular access to the unitary operator U and a quantum
state |ψ〉
The cost of the algorithm is considered to be only the number of
times U needs to be used (not the cost of implementing U).



(imaginary) Hadamard test: estimating the real and imaginary part of
〈ψ|U |ψ〉, needs O(1/ε2) measurements to estimate θ to
precision ε.

Kitaev’s method: uses 1 ancilla qubit, but d different circuits of various
depths to estimate θ bit-by-bit,

QFT approach: one signal quantum circuit, but d ancilla qubits to store
the phase information.



Quantum Phase Estimation (QPE)
Let U be a unitary operator acting on the d-qubit register. If |ψ〉 is an
eigenvector of U, then

U |ψ〉 = e2πıθ |ψ〉 for some 0 ≤ θ < 1.

The goal of QPE is to obtain a good approximation of θ with a small
number of gates and a high probability of success. The (ideal) QPE
algorithm is to find UQPE (a quantum circuit) that performs
transformation

UQPE |ψ〉 |0〉 = |ψ〉 |θ〉 ,

where |θ〉 = |θd−1〉 · · · |θ1〉 |θ0〉 with binary representation (.θ0θ1 · · · θd−1)
of θ. We can then measure the second register (qubit) to obtain θ.

Kitaev’s Idea: use a more complex quantum circuit (and in particular,
with a larger circuit depth) to reduce the total number of queries. Instead
of estimating θ from a single number, we assume access to U2j , and
estimate θ bit-by-bit Total cost of Kitaev’s method Kitaev (1995) (in
terms of queries to U is O(ε−1).
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Fundamental NLA Problems in Scientific Computing

Solving Linear Systems
Given an nonsingular N × N matrix
A and vector b of size N find x
such that

Ax = b or equivalently x = A−1b.

Solving Least-Squares
Problem
Given an N × N matrix A and
vector b of size N find x such
that

min ‖Ax − b‖2.

Solving Eigenvalue Problem
Given an N × N matrix A find
x 6= 0 and λ ∈ R such that

Ax = λx.

Functions of Matrices
Given an nonsingular (Hermitian
for simplicity) N × N matrix A
find

f(A).



Matrix Functions - Hermitian Matrices
Many scientific computing tasks can be expressed using matrix functions,
e.g.,

solving linear systems of equation: f (A) = A−1,

Gibbs state preparation: f (A) = e−βA, or

Hamiltonian simulation: f (A) = eıiAt .

Goal: construct an efficient quantum circuit to compute f (A) |b〉 for any
state |b〉.

Idea: qubitization [Low and Chuang, 2019].



Definition 10 (Matrix function of Hermitian matrices)
Let A ∈ CN×N be an n-qubit Hermitian matrix with eigenvalue
decomposition

A = VΛV∗,

where Λ = diag (λ0, . . . , λN−1) is a diagonal matrix with λ0 ≤ · · · ≤ λN−1
being the eigenvalues of A. Let f : R → C be a scalar function such that
f (λi) is defined for all i = 0, . . . ,N − 1. Then the matrix function f (A)
can be defined in terms of this eigendecomposition as

f(A) := Vf (Λ)V∗,

where
f (Λ) = diag (f (λ0) , f (λ1) , . . . , f (λN−1)) .



Qubitization for representing matrix functions
Let us first introduce the main idea behind qubitization using a simple
example. For any −1 < λ ≤ 1, we can consider a 2 × 2 rotation matrix

O(λ) =

[
λ

√
1 − λ2

−
√

1 − λ2 λ

]
=

[
cos θ sin θ
− sin θ cos θ

]
,

with the change of variable λ = cos θ, 0 ≤ θ < π. Direct computations
yield

Ok(λ) =

[
cos(kθ) sin(kθ)
− sin(kθ) cos(kθ)

]
=

[
Tk(λ)

√
1 − λ2Uk−1(λ)

−
√

1 − λ2Uk−1(λ) Tk(λ)

]
,

with

Tk(λ) = cos(kθ) = cos(k arccosλ), Uk−1(λ) =
sin(kθ)
sin θ

=
sin(k arccosλ)√

1 − λ2
,

being the Chebyshev polynomials of first and second kind, respectively.

If we can "replace" λ by A, we obtain a (1,1)-block-encoding for the
Chebyshev polynomial Tk(A).



In the following we will assume that A is queried in the exact
block-encoding model, i.e., UA is an (1,m)-block-encoding of matrix A.
Let us consider the eigendecomposition

A =
∑

i
λi |vi〉 〈vi | .

Then, since A = (〈0|⊗m ⊗ In)UA(|0〉⊗m ⊗ In), for each eigenstate |vi〉,

UA |0m〉 |vi〉 = |0m〉A |vi〉+
∣∣∣⊥̃i
〉
= λi |0m〉 |vi〉+

∣∣∣⊥̃i
〉
, (4)

where
∣∣∣⊥̃i
〉

denotes an unnormalized state orthogonal to all states of the
form |0m〉 |ψ〉, i.e., given a projection operator Π = |0m〉 〈0m| ⊗ In

Π
∣∣∣⊥̃i
〉
= 0.

Using a normalized state |⊥i〉 we can write∣∣∣⊥̃i
〉
=
√

1 − λ2
i |⊥i〉 . (5)



Hence, (4) can be written as

UA |0m〉 |vi〉 = λi |0m〉 |vi〉+
√

1 − λ2
i |⊥i〉 .

If we now formally denote

|0〉⊗m |vi〉 =
[
1
0

]
and |⊥i〉 =

[
0
1

]
,

we can write

UA

[
1
0

]
=

[
λi√

1 − λ2
i

]
. (6)

Since UA is unitary and Hermitian, U2
A = I. From this and (6), it follows

that

UA =

 λi

√
1 − λ2

i√
1 − λ2

i −λi

 , (7)

which is a reflection matrix.



With change of variable λi = cos(θi), 0 ≤ θi < π

UA =

[
cos(θi) sin(θi)
sin(θi) −cos(θi)

]
. (8)

As our goal is to get the block-encoding of Tk(A), we want to transform
UA into a rotation matrix O(λ). Note that this is possible if we can flip
the signs of the entries in the second row of UA, i.e., multiply UA on the
left by RΠ such that

RΠUA = RΠ

 λi

√
1 − λ2

i√
1 − λ2

i −λi


=

[
1 0
0 −1

] λi

√
1 − λ2

i√
1 − λ2

i −λi


=

 λi

√
1 − λ2

i

−
√

1 − λ2
i λi

 =

[
cos(θi) sin(θi)
−sin(θi) cos(θi)

]
= O. (9)



Note that RΠ = 2Π− I, acts as a reflection operator restricted to each
subspace Hi . Hence,

Ok = (RUA)
k =

[
Tk(A) ∗

∗ ∗

]
, (10)

is a (1,m)-block-encoding of the Chebyshev polynomial Tk(A). If m = 1,
then RΠ is just the Pauli Z gate. For m > 1, the circuit

|1〉

|ψ〉

Z

Figure 12: Circuit for rotation operator O.

returns |1〉 |0m〉 if ψ = 0m, and −|1〉|ψ〉 if ψ 6= 0m. Hence, it implements
RΠ with the signal qubit |1〉 used as a work register. Altenatively, we may
discard the signal qubit, and denote resulting unitary by RΠ.



Since cicuit in Figure 12 implements the operator O repeating it k times
gives the ( 1,m + 1 )-block-encoding of Tk(A), i.e.,

|1〉

|0〉⊗m

|ψ〉

Z

UA

Figure 13: Circuit for one step of qubitization with a Hermitian (1,m)-block-encoding UA of
Hermitian matrix A.



Quantum Linear System Problem (QLSP)

Classical Linear System Problem: Given an nonsingular (Hermitian for
simplicity) N × N matrix A and vector b of size N find x such that

Ax = b or equivalently x = A−1b.

Best general purpose algorithm Conjugate Gradient (CG) method has
asymptotic complexity O(N

√
κ(A).

Quantum Linear System Problem (QLSP): Given an nonsingular
N × N matrix A and a quantum state |b〉 of size N find (prepare) a
quantum state |x̃〉 such that

‖ |x̃〉 − |x〉 ‖ ≤ ε and |x〉 = A−1 |b〉
‖A−1 |b〉 ‖ .

|x̃〉 is an ε-approximation of a quantum state |x〉.



QLSP Assumptions

There exists a black-box procedure to compute the elements of
matrix A, e.g., block-encoding.
There exists a black-box procedure to prepare the initial state
|b〉, i.e., |b〉 = Ub |0n〉 (we assume they can be implemented using
two-qubit gates in "constant" time).
The number of uses of the procedures determines query complexity of
the algorithm, the number of queries provides a lower bound for the
gate complexity.

Remark 11
This quantum version of the problem is, however, only useful for
computing expectation values in the solution of the system, but not for
obtaining the actual solution vector.



Query Complexity for QLSP

Harrow, Hasidim, Lloyd (2008) Quantum Phase Estimation (QPE),
Õ(κ2(A)log(N)/ε

Ambainis (2012) Variable Time Amplitude Amplification (VTAA),
Õ(κ(A)log(N)/ε3

Childs, Kothari, Somma (2017) LCU, Chebyshev approximation,
Õ(κ(A)log(N)poly log(1/ε)

Subasi, Somma, Orsucci (2018) Adiabatic Quantum Computing
(AQC), Õ(κ(A)log(N)/ε)

An and Lin (2019) Time-optimal Adiabatic Quantum Approach (AQC),
O(κ(A)log(N)/ε)



Harrow, Hasidim, and Lloyd (HHL) Algorithm
[Harrow et al., 2009]
Goal: prepare a quantum state |x〉 whose amplitudes are equal to the
elements of the vector x that solves Ax = b for symmetric positive definite
A.

the first quantum algorithm for solving QLSP,
gives a scalar measurement on the solution vector, instead of the
values of the solution vector itself,
implements a 1/κ(A)-approximation to the initial state,
its complexity is ≈ (κ(A)/ε), i.e., Õ(κ2log(N)/ε),

Consider the eigendecomposition of a sparse, nonsingular A with
κ(A) <∞, i.e.,

A |vj〉 = λj |vj〉 , j = 0, . . . ,N − 1,

with eigenvalues 0 < λ0 ≤ λ1 ≤ . . . λN−1 < 1 having an exact d-bit
representation.



HHL Procedure
Step 1 Use Hamiltonian simulation technique to transform matrix A

into a unitary operator U = eı2πA that can be applied to |b〉,
i.e.,
if |b〉 = |vj〉 then QPE can be applied to implement

UQPE
∣∣∣0d
〉
|vj〉 = |λj〉 |vj〉 .

else expand the input state |b〉 =
N−1∑
j=0

βj |vj〉 and

UQPE
∣∣∣0d
〉
|vj〉 =

N−1∑
j=0

βj |λj〉 |vj〉 .



Step 2 Since the unnormalized solution satisfies

A−1 |b〉 =
( N−1∑

j=0
λ−1

j |vj〉 〈vj |

)( N−1∑
j=0

βj |vj〉

)
=

N−1∑
j=0

βj
λj

|vj〉 ,

we will need to use the information on the eigenvalues |λj〉
stored in the ancilla register and perform a controlled
rotation to multiply the factor λ−1

j to each βj .



Example Quantum Eigenvalue Problem

Classical Eigenvalue Problem: Given an nonsingular (Hermitian for
simplicity) N × N matrix A and vector of size N find λ ∈ R and a nonzero
vector x ∈ RN such that

Ax = λx.

Example Quantum Eigenvalue Problem: Given a Hamiltonian

H =
T∑

i=0
αiPi , where αi ∈ R+,

T−1∑
i=0

αi = 1, Pi are Pauli operators and

T = O(poly(n)), find (prepare) a ground state |x̃〉 such that

H |ψ〉 = E0 |ψ〉 ,

where |ψ〉 is a ground state (state corresponding to the lowest energy E0.



Quantum Subspace Diagonalization
(QSD) [Cortes and Gray, 2022b, Epperly et al., 2022]
Given a set of states

{|ψk〉 = Uk |ψ0〉 , k = 0, 1, 2, . . . ,D − 1} (11)

that can be prepared on a quantum computer by quantum circuits Uk , we
project the Hamiltonian H onto the D-dimensional Hilbert space
span{|ψk〉 = Uk |ψ0〉 , k = 0, 1, 2, . . . ,D − 1}, i.e.,

Hij = 〈ψi |H |ψj〉 = 〈ψ0|U∗
i HUj |ψ0〉 ,

Sij = 〈ψi | ψj〉 = 〈ψ0|U∗,
i Uj |ψ0〉 .

(12)

Then, having estimated H and S, we classically solve the generalized
eigenvalue problem (GEVP)

Hv = µSv (13)

and find the lowest eigenvalue µ, variational estimate of the ground state
energy.



Remark 12
S is the overlap (Gram) matrix of the states (11),
H and S can be estimated by repeated SWAP or Hadamard tests,
generalized eigenvalue problem (13) needs to be regularized due to
ill-conditioning of S with growing D.



Classical Lanczos Method

Input: Hamiltonian H and initial guess |ψ0〉
⇒ H |ψ0〉 ⇒ · · · ⇒ HD−1 |ψ0〉

(H,S) = project H onto span{
|ψ0〉 ,H |ψ0〉 ,H2 |ψ0〉 , . . . ,HD−1 |ψ0〉

}
︸ ︷︷ ︸

Krylov space
Output: Lowest eigenvalue of (H,S) (Ritz value), i.e., Hv = µSv,

approximates lowest eigenvalue of H
Advantages:

Exponential convergence with respect to D (in infinite precision
arithmetic).

Disadvantages:
Requires storing Krylov basis vectors, Hk |ψ0〉 exponential overhead
(cost of classically representing vectors).



Is it possible to design a quantum version that reduces
statevector overhead while maintaining rapid convergence?



Towards Quantum Lanczos
Several quantum methods have been proposed to adapt the Lanczos
algorithm:
imaginary time evolution approaches: Quantum Lanczos

(QLanczos) [Motta et al., 2020],
real time evolution approaches : Quantum Filter Diagonalization

(QFD) [Parrish and McMahon, 2019, Stair et al., 2020,
Cohn et al., 2021],
[Cortes and Gray, 2022a, Klymko et al., 2022],

linear combinations of time evolutions: Quantum Power
Method [Seki and Yunoki, 2021] approximates powers of H
via linear combinations of time-evolved states.

All these methods converge to the classical Lanczos algorithm in
specific limits.
However, both real and imaginary time evolution require
approximations.



Truly Quantum Lanczos [Kirby et al., 2023]

A quantum algorithm that produces exactly the same Krylov
space as the one used in the classical Lanczos method (up to finite
sampling noise).
Focuses on Hamiltonians encoded as linear combinations of
Pauli operators, which simplifies the measurement scheme, however,
the method is generalizable to other block encodings.
The Krylov basis vectors are defined using Chebyshev polynomials:

|ψk〉 = Tk(H)|ψ0〉 for k = 0, 1, . . . ,D − 1.

Since Chebyshev polynomials span the same space as powers of
H, we have:

span{Tk(H)|ψ0〉} = span{Hk |ψ0〉}.

The quantum subspace diagonalization (QSD) approach can find
the lowest-energy state in this Krylov subspace.
Thus, using Chebyshev polynomials yields performance equivalent
to powers of the Hamiltonian, up to finite sample noise.



QSD step in Quantum Lanczos
To diagonalize H projected onto subspace span{Tk(H)|ψ0〉}D−1

k=0 , we need
to estimate

Hij := 〈ψ0|Ti(H)HTj(H) |ψ0〉 , Sij := 〈ψ0|Ti(H)Tj(H) |ψ0〉

on quantum computer for i , j = 0, 1, 2, . . . ,D − 1, then solve a generalized
eigenvalue problem

Hv = µSv.

Using the block encodings of Tk(H) |ψ0〉, the properties of Chebyshev
polynomials and denoting by 〈·〉0 expectation value with respect to the
initial state |ψ0〉 we get:

Hij = 〈Ti(H)HTj(H)〉0 =
1
4

(
〈Ti+j+1(H)〉0 +

〈
T|i+j−1|(H)

〉
0

+
〈
T|i−j+1|(H)

〉
0 +

〈
T|i−j−1|(H)

〉
0

)
.



Sij = 〈Ti(H)Tj(H)〉0 =
1
2

(
〈Ti+j(H)〉0 +

〈
T|i−j|(H)

〉
0

)
,

for i , j = 0, 1, 2, . . . ,D − 1.

Therefore, to construct matrices H and S, we only need to estimate all
expectation values

〈Tk(H)〉0 := 〈ψ0|Tk(H) |ψ0〉 for k = 0, 1, 2, . . . , 2D − 1.

Let us now recall the Definition 6 of the standard form

(〈G |a ⊗ Is)UH (|G〉a ⊗ Is) = H . (14)

and our simple n-qubit Hamiltonian expressed as a linear combination of
Pauli operators Pi , i = 1, . . . ,T , T = O(poly(n)), i.e.,

H =
T−1∑
i=0

αiPi .



Block-Encoding and Implementation of the Unitary Then the

block-encoding UH of the Hamiltonian H is given as

UH =
T−1∑
i=0

|i〉a 〈i |a ⊗ Pi .

Apply P(j)
i (the j th single-qubit Pauli operator in Pi ) to system qubit

j , controlled on the auxiliary qubits being in state | i)α .
As Pi is an n-qubit Pauli operator, implementing UH requires
applying at most nT single-qubit Pauli operators, each controlled on
all of the auxiliary qubits.

Block-encoding and Preparation Procedure for the State

|G〉a =
T−1∑
i=0

√
αi |i〉a .

We can use any existing state preparation procedures for |G〉a = G |0〉a
since there are only logarithmically-many auxiliary qubits, so it is efficient.



Getting 〈Tk(H)〉0 from (UH ,G)

Lemma 13 (Chebyshev polynomials from block-encoding
[Kirby et al., 2023])

Given (UH ,G) of a Hamiltonian H, such that U2
H = I, let

R := (2|G〉a 〈G |a − Ia)⊗ Is .

be the reflection around |G〉a in the auxiliary space. Then(
〈G |a ⊗ Is) (RU)k (|G〉a ⊗ Is) = Tk(H) .

for any k = 0, 1, 2, . . ., where Tk(·) is the kth Chebyshev polynomial of the
first kind, i.e., (RUH)

k is a block encoding of Tk(H).



UH =

[
H ·
· ·

]
, RH =

[
I 0
0 −I

]
With U2

H = I

(RUH)
k =

[
Tk(H) ·

· · .
]



Given a block-encoding (UH ,G) of a Hamiltonian H, Lemma 13
leads to:

〈Tk(H)〉0 = (〈G |a ⊗ 〈ψ0|) (RU)k (|G〉a ⊗ |ψ0〉)

Since R is a Hermitian reflection about |G〉a, the expression
simplifies:

〈Tk(H)〉0 = (〈G |a ⊗ 〈ψ0|)U(RU)k−1 (|G〉a ⊗ |ψ0〉) .

The operator (UH(RUH)
k−1) can be rewritten based on the parity of

k:

UH(RUH)
k−1 =

{
(UHR)k/2R(RUH)

k/2 if k is even
(UHR)bk/2cUH(RUH)

bk/2c if k is odd.



Hence, defining the state∣∣ψbk/2c
〉
= (RUH)

bk/2c (|G〉a ⊗ |ψ0〉) ,

and its adjoint 〈
ψbk/2c

∣∣ = (〈G |a ⊗ 〈ψ0|) (UHR)bk/2c

yields

〈Tk(H)〉0 =

{
〈ψbk/2c|R|ψbk/2c〉 if k is even,
〈ψbk/2c|UH |ψbk/2c〉 if k is odd.



Measurement Procedure

1 State preparation: Prepare |ψbk/2c〉 by applying RU bk/2c times to
|G〉a ⊗ |ψ0〉.

2 If k is even (measure R):
Apply G† to undo G .
Measure observable 2|0〉a〈0|a − 1 on the auxiliary qubits.
Return +1 if all auxiliary qubits are measured as |0〉; otherwise return
−1.

3 If k is odd (measure U):
Decompose U =

∑
i |i〉a〈i |a ⊗ Pi .

Measure auxiliary qubits in the computational basis.
If the result is |i〉a, measure system qubits in the Pauli basis Pi ;
otherwise return 0.

4 Repeat steps 1–3 until enough statistics are collected to estimate the
expectation value to the desired precision.



Figure 14: [Kirby et al., 2023]



Summary of Requirements and Costs

Block Encoding (UH ,G): for n qubits and T Hamiltonian terms:
Cost of UH : nT
Cost of G : 2T
Cost of R: 4T

All in dlog2 T e-controlled single-qubit gates
Measurement Overhead: depends on the target precision and the

classical methods used to regularize and solver the
generalized eigenvalue problem

State Preparation: Prepare |G〉a ⊗ |ψ0〉
Apply up to D − 1 layers of RUH
Measure either in Pauli basis or apply G† then measure
Longest sequence uses (D − 1)nT + 4DT
dlog2 T e-controlled single-qubit gates.

Qubit Requirements: system qubits for |ψ0〉 (those that H acts on),
auxiliary qubits for |G〉a: can be dlog2 T e if Hamiltonian
has T terms



Error Analysis of Quantum Lanczos
Error scaling subject to:

finite sample noise, i.e., matrix elements are obtained from
expectations values estimated by repeated measurements)
devise noise, when executing the algorithm on a real quantum
computer,
regularization of the overlap matrix S, stability issues, condition
number of S grows exponentialy with the Krylov space dimension D



Ground State Energy Estimate

Theorem 14 (Theorem 1, [Kirby et al., 2023])
The error in the ground state energy estimate coming from the regularized
problem ... is bounded by

E ≤ O(
(
D4η

) 1
1+α +

√
δεtotal

|γ0|2
+ δ +

1
|γ0|2

(
1 +

δ

2

)−D
, )

with
η noise rate,

0 ≤ α ≤ 1/2 constant (α = 1/4 [Epperly et al., 2022] and
α = 0 [Kirby et al., 2023]),

δ > 0 constant,
ε > 0 threshold for regularization,
εtotal sum of the eigenvalues of S discarded by regularization,
γ0 overlap of the initial reference state |ψ0〉 with the true

grounds state |E0〉, γ0 = 〈E0|ψ0〉.



E ≤ O(
(
D4η

) 1
1+α +

√
δεtotal

|γ0|2
+ δ +

1
|γ0|2

(
1 +

δ

2

)−D
)

Term 4 error due to exact Krylov space, vanishes exponentially with
the Krylov space dimension D,

Term 3 energy error tolerance, determines the rate of exponential
decay of aplitudes of energies more than δ above the ground
state, if δ ≈ ∆(spectral gap) this term can be removed,
otherwise the approximated state in general will not be a
ground state, but an arbitrary state in the low energy
subspae within δ distance of the ground state energy,

Term 2 error due to regularization of (H,S) by ε, i.e., discarding
eigenspaces of S with eigenvalues smaller than ε,

Term 1 factor D
4

1+α comes from the proof
technique [Epperly et al., 2022].
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Actuall Error Bound
To reach energy error E we require:

Krylov space dimension: D = Θ
[(

log 1
|γ0| + log 1

E

)
min

( 1
E ,

1
∆

)]
(is also

a maximum circuit depth in terms of queries to the
block-encoding operator).

Total number of measurements: M = Θ
(

D( 1
E2 + 1

E|γ0|4
)
)
.



Summary of [Kirby et al., 2023] Quantum Lanczos
uses block encoding to exactly reproduce the Krylov space of the
classical Lanczos method on quantum computer,
this quantum algorithm achieves it in polynomial time and
memory,
resulting Krylov space (although not represented with orthogonal
basis) is identical to the one generated by the Lanczos method (up to
finite sample noise),
this algorithm does not require simulating real or imaginary time
evolution,
explicit error bounds in the presence of noise,
requires Ω(1/poly(n)) overlap between initial state and the true
ground state for n qubits,
it requires one local basis rotation per circuit in addition to the
block encoding unitaries.



Thank you very much for your attention.

Questions?
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