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Quantum simulation of partial differential equations
via

Schrodingerisation

PART I: Basics for linear PDEs



Looking beyond 
classical infrastructure…

Reaching classical bottlenecks in

• Size of chips (Moore’s law) 
• Communication (bandwidth) 
• Energy cost 
• Memory
• Time

KEY MESSAGE:
Our computational techniques and 
mathematical language must change 
when the underlying physical 
infrastructure changes!

Furthermore, algorithms should be as 
simple as possible, but no simpler
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Quantum simulation

After a 
certain 
time? 

Today we are reaching 
beyond the limit of what 
classical computers can 

easily simulate:

Quantum computers: 
O(100) ‘quite good’ qubits

Quantum simulators with 
continuous-variables: 
O(1000000) qumodes
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Ordinary and partial differential equations across multiple scales
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Quantum simulation of ODEs and PDEs
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To put onto 
quantum 
hardware:

How to map onto 
Schrodinger’s 
equation in a 
simple way?

Schrodingerisation!



Overview of summer lectures on Schrodingerisation 
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PART I: Basics of Schrodingerisation (today and tomorrow) 

Flexible method for mapping linear PDEs to a corresponding Schrodinger 
equation in one higher dimension

• Continuous space and time formulation (analogue) 
• Discrete space formulation (digital) 
• Homogeneous 
• Inhomogeneous
• Higher-order time derivatives  
• Ill-posed linear PDEs
• Boundary conditions
• Improving algorithm with respect to precision



Overview of summer lectures on Schrodingerisation 

7

PART II: Special topics (tomorrow and day after) 

• Nonlinear ODEs and PDEs

• Uncertain ODEs/PDEs

• Non-autonomous mapped to autonomous PDEs

• Application to linear algebra, ground state and thermal state preparation



Overview of summer lectures on Schrodingerisation 
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PART III: Examples session (flexible)! 

• Any of the special topics in Part II in more depth

• Going through some examples and explicit circuits 

• Introducing UnitaryLab: software for quantum simulation for PDEs

• Extra topics (a) quantum thermal state preparation for optimization 
(b) quantum algorithm for algebraic Riccati equation (application to 
learning problem)  

 



Formulation of differential equations versus linear algebra
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Mathematical language Time Space 

Partial differential equation Continuous Continuous  

Ordinary differential equation Continuous Discrete 

Linear algebra Discrete Discrete 



4 classes of ways of using quantum 
hardware as simulators
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Do we choose space and time to be continuous or discrete 
during simulation? Depends on the quantum platform! 
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4 types of 
simulators/computers

Continuous/analog Discrete/digital 

Space
(data encoding) 

Continuous variable quantum 
states, qumodes 

(infinite dimensional vectors; 
acted on by operators) 

Qubits, qudits 

(finite dimensional vectors; 
acted on by matrices)

Time
(data processing) 

Continuous-time and analogue 
quantum simulation

(matrix language or operator 
language, depending on data 
encoding) 

Digital quantum simulation

(matrix language or operator 
language, depending on data 
encoding)



Atomic energy level 

ۧ|𝟎 ۧ|𝟏

Energy

Qubit

Digital quantum information: matrix language

Bit

12Ions, spin systems, superconducting qubits…etc  



Digital quantum simulation (qubits)Typical digital quantum simulation: evolution through digital steps
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Analogue quantum information: operator language

Qumode

(continuous-variable CV) 

14Position and momentum operators don’t commute in quantum mechanics



Analogue quantum information: operator language

Qumode

(continuous-variable CV) 

15Easy to do Fourier transform on optical systems (change of measurement basis)!

Important 
correspondence
we will use later:



Analogue quantum information: operator language
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Analogue quantum information: operator language

Born’s rule 

17Lasers, light inside cavities, freely moving atoms…etc 

Qumode

(continuous-variable CV) 



Analogue quantum simulation
Analogue quantum simulation: evolution in continuous time
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Quantum 
simulation 

• Analogue quantum 
simulation: Nearer-term 

• Digital quantum 
simulation: Far-term

- System evolves naturally 
(continuously) in time 

- Can readily scale to large 
system sizes

- Error limited by accuracy of 
model used (parameter 
calibration, noise…etc) 

- Continuous spatial degrees of 
freedom also allowed: analog 
(or continuous-variable) 
quantum simulation

- Evolution broken down into 
elementary gates or easily 
realisable Hamiltonian 
evolution

- Error correction and fault 
tolerance: much larger system 
sizes required 
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Qubits Qumodes

arXiv: 1001.2215
20



A taste of how powerful qumodes 
can be…
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Shor’s algorithm: a quantum algorithm to break RSA
requires many perfect qubits… 

Lots of quantum algorithms based on quantum phase estimation 
and quantum fourier transforms (crucial part for factoring and 
other algorithms): https://quantumalgorithmzoo.org/ 22



Factoring can be powered by a single clean qumode!

Squeezed state s

Squeezed state 
input

Measure probability 
distribution of outcome 
after running for time

N. Liu et al, `Power of one qumode’, PRA, 2016:

Exchanging number of qubits as resource for energy 

of a qumode          
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Problems become `simpler’ by lifting to a higher dimension!

Extra cost in quantum simulation of extra K dimensions costs 
only O(K) and not exponential in K. 

Might be classically more costly…but can potentially be more 
efficient with quantum simulation! 

1. Schrodingerisation: Linear non-Schrodinger’s equations become 
Schrodinger-like equations

(e.g. dissipative equations become conservative equations)

JUST ADD ONE DIMENSION

2. . nonlinear problems become linear

DEPENDS ON PDE

3. Linear uncertain problems with L uncertain variables become 
deterministic

JUST ADD L DIMENSIONS 

4. Linear non-autonomous systems become linear autonomous 

JUST ADD MAX TWO DIMENSIONS
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Classical computation: suffers from 
curse of dimensionality

Quantum computation: can resolve 
curse of dimensionality for PDEs

dimensional reduction
coarse graining
mean-field approximations
moment closure
……

lift to a higher dimension 
(but not too high) 

Our philosophy: problems become 
simpler by lifting to higher dimension 

High-dimensional problems
Linear/certain/autonomous/
simpler

Low-dimensional problems
Nonlinear/uncertain/non-
autonomous/other issues

25



I. Schrodingerisation

``Turning linear non-Schrodinger’s equations into Schrodinger’s equations”

Based on: 
 “Quantum simulation of partial differential equations via Schrodingerisation”,
  Physical Review Letters (arXiv: 2212.13969), Shi Jin, Nana Liu, Yue Yu
  + technical companion paper Physical Review A (arXiv: 2212.14703), Shi Jin, Nana Liu, Yue Yu

“Analog quantum simulation of partial differential equations”,
 Quantum Science and Technology (arXiv: 2308.00646), Shi Jin, Nana Liu 26



ODEs and PDEs with multiple M initial conditions:
how to map onto equations of Schrodinger’s form?
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Equations of Schrodinger form – 
can use quantum simulation directly when evolution is unitary
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Classical versus quantum solutions
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30

D+1 qumode quantum evolution solves D-dimensional linear PDE!



Benefits of 
analogue
quantum 

simulation for 
PDEs

• No need to discretise the PDE (derivatives in time, 
derivatives in space…etc)

• Can potentially utilise existing Hamiltonians without 
breaking up into many gates, e.g. like in analogue 
quantum simulation 

• Mimicking the history of classical computing…classical 
computing also evolved from analog to digital before 
error-correction was well-developed. Today analog is 
making a comeback in classical computing too 

• Touches on foundational questions, more directly, on 
how one physical system can emulate another

• Simpler formulation and easier when learning for the first 
time: good for seeing the structure of the Hamiltonian
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Linear partial differential equations:
warm-up example with heat equation
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Schrodingerisation and the warped phase transformation 

Increase problem by one dimension (‘warped phase space’)
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Heat equation in ‘warped phase space’

34



Take Fourier transform to make into 
Schrodinger-like equation
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Schrodingerisation in continuous-variable 
implementation
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Recovering the state u  
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General methodology
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General methodology
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General methodology
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Implementation scheme

Just add one qumode:
`Qumodisation’
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Implementation scheme

Just add one qumode:
`Qumodisation’
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Schrodingerisation formulation:
any linear PDE becomes a Schrodinger-like equation in one 
higher dimension in a very simple way 
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We provide a simple recipe: Given any linear system of ODEs or PDE we find the corresponding 
quantum system; and given any quantum system, can find corresponding linear ODE/PFE



Schrodingerisation is easily applicable to not only 
the four main classes of quantum devices, 
but also hybrid qubit-qumode devices  
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Examples of scalar homogeneous PDEs 
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Simplest 
example

In general, simulation of PDEs require entangling operations 

and will go beyond Gaussian operations 
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Example for 
physical 
platform
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Linear first-order PDEs
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Liouville equation
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Black-Scholes equation
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Heat equation

52



Fokker-Planck equation
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Systems of linear PDEs
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Systems of linear PDEs

There are at least five different reasons to consider systems of linear PDEs and this 
requires either hybrid qumode-qubit systems or qubit-based systems:

• The application itself naturally has multiple variables obeying a coupled PDE

• A scalar PDE solution can be approximated by a system of PDEs which can be 
more experimentally accessible (using analogue quantum simulation)

• Higher-order time derivatives 

• Inhomogeneous PDEs which can arise either 

- naturally from source terms or

- through boundary conditions (in qubit-based formalism)
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Example: Hyperbolic heat equation approach 
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Hyperbolic heat equation solution approximates 
heat equation solution 
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Quantum simulation of hyperbolic heat equation

58



Quantum simulation of hyperbolic heat equation
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Already experimentally accessible in analog quantum simulation
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Applications

Applications to:  
1) Multidimensional heat equation
2) Black-Scholes equation: 1-dimensional (heat) and multidimensional 
3) Fokker-Planck equations
….realisable in cavity and circuit QED systems 

61



Applications
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Higher-order time derivatives…second order example 
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Wave equation
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Unstable dynamical systems: more 
general inhomogeneous PDEs and 
backward-in-time dissipative linear PDEs
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Unstable dynamical modes 
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This has applications in 

• Inhomogeneous PDEs that arise
- from natural source terms 
- Inclusion of boundary conditions

• Backward PDEs

• Iterative algorithms for linear algebra  



Inhomogeneous linear PDE
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Unstable dynamics
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Unstable dynamics
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Modified Schrodingerisation 
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Backward PDEs
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Backward PDEs
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Backward PDEs
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Discretisation of qumodes 
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Discretising qumodes 
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Possible qumodes to discretise:

• We can choose to discrete only the qumodes for spatial degrees of freedom for the PDE

• We can choose to discretise only the ancilla qumode 

• We can discretise all the qumodes 



Different numerical schemes 

76



Different numerical schemes: finite difference methods examples 
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Costs: simulating 1D advection equation to fidelity 0.9
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Compare: using qumodes we can already simulate to a 200,000 dimensional problem 



Costs: simulating 1D hyperbolic heat equation to fidelity 0.9
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Compare: using qumodes it is already within experimental possibility to simulate this equation



Boundary conditions and 
inhomogeneous PDEs
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Artificial boundary conditions 

81

Simulating time-dependent quantum dynamics (e.g. emission of electrons) usually would 
require large computational domains. If one limits the computational domain and allow 
reflecting boundary conditions, this would cause interference with the solution in the 
domain, so need suitable boundary conditions to absorb outgoing wave-packets. These are 
artificial boundary conditions. For example using CAP: 

Other methods (also having computational domain and including a buffer layer): Perfectly 
matched layers (PML) and Dirichlet-to-Neumann map (DtN) 



Physical boundary conditions
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Inhomogeneous linear PDE
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Near-optimal strategies in precision
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Schrodingerisation: simplest ancilla initial state 
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Schrodingerisation: improving scaling with precision
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Schrodingerisation: improving scaling with precision
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Summary of comparison of methods: for digital 
quantum algorithms
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Foundational implications?
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Mathematical theory of dilation: Nagy’s theorem 
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What are all the 
possible  classes of 
dilations, that are 
suitable for different 
problems?



Where is the quantum? Future interesting questions

Hard to see how non-Clifford gates are related to aspects of 
the PDE. Also difficult to see complementarity for non-

Clifford gates

In Schrodingerisation, simple to see exactly which parts of 
the PDE requires non-Gaussianity



A new way to look at the boundary from quantum to 
classical physics across space and time scales? 



Summary
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Schrodingerisation formulation:
any linear PDE becomes a Schrodinger-like equation in one 
higher dimension in a very simple way 
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We provide a simple recipe: Given any linear system of ODEs or PDE we find the corresponding 
quantum system; and given any quantum system, can find corresponding linear ODE/PFE
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D+1 qumode quantum evolution solves D-dimensional linear PDE!



Quantum 
simulation cost 
is only linear in 
dimension…and 
if use qubits is 
also 
logarithmic in 
discretization 
size! 
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Cost for discretised scheme

This varies according to:

• Which qumodes one chooses to discretise (ancilla, main, or both?)
• Which numerical scheme one chooses
• Which Hamiltonian simulation protocol one chooses



Benefits of 
Schrodingerisation

Can take advantage of continuous-variable/analog  quantum simulation: no 
discretisation of PDE is needed

No discretisation in time needed: continuous time evolution, even in qubit version; 
May not need to break up into many gates in the continuous formalism

Formalism easily adapted to fully digital setting (qubits and discrete time). Here 
quantum cost can be polylog in discretization size and poly in dimension 

Avoid complications of matrix inversion methods (e.g. condition number dependence) and other 
methods (e.g. needing square roots of operators in block-encoding, using polynomial expansions) 

Can see explicitly which parts of the PDE (including initial conditions) requires entangling 
operations and which parts require non-Gaussian operations in the continuous-variable setting

Formalism is flexible and simple enough for not only continuous-variables and qubits, 
but also hybrid discrete-continuous variable platforms 

Can get `cost’  in D, instead of exponential in D

Many other methods based on 
matrix inversion, or block-
encoding or LCU: Berry 2014, 
Berry et al 2015, Costa et al 2019, 
Linden et al, 2020, Childs et al 
2021, An et al 2023 …etc Can ask 
me later for more references 98



Problems become `simpler’ by lifting to a higher dimension!

Extra cost in quantum simulation of extra K dimensions costs 
only O(K) and not exponential in K. 

Might be classically more costly…but can potentially be more 
efficient with quantum simulation! 

1. Schrodingerisation: Linear non-Schrodinger’s equations become 
Schrodinger-like equations

(e.g. dissipative equations become conservative equations)

JUST ADD ONE DIMENSION

2. . nonlinear problems become linear

DEPENDS ON PDE

3. Linear uncertain problems with L uncertain variables become 
deterministic

JUST ADD L DIMENSIONS 

4. Linear non-autonomous systems become linear autonomous 

JUST ADD MAX TWO DIMENSIONS
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Classical computation: suffers from 
curse of dimensionality

Quantum computation: can resolve 
curse of dimensionality for PDEs

dimensional reduction
coarse graining
mean-field approximations
moment closure
……

lift to a higher dimension 
(but not too high) 

Our philosophy: problems become 
simpler by lifting to higher dimension 

High-dimensional problems
Linear/certain/autonomous/
simpler

Low-dimensional problems
Nonlinear/uncertain/non-
autonomous/other issues
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Reference list for Schrodingerisation (Part I): 

Schrodingerisation basics and mathematical theory:

- Quantum simulation of partial differential equations via Schrodingerisation, Shi Jin, Nana Liu*, Yue Yu, arXiv: 
2212.13969, Physical Review Letters, Vol 133, 230602, 2024

- Quantum simulation of partial differential equations : applications and detailed analysis, Shi Jin*, Nana Liu*, 
Yue Yu*, Physical Review A, Vol 108, 032603, 2023  

- On the Schrodingerisation method for linear non-unitary dynamics with optimal dependence on matrix queries, Shi 

Jin, Nana Liu and Chuwen Ma, Yue Yu*, arXiv: 2505.00370, 2025

- Dilation theorem via Schrodingerisation, with applications to the quantum simulation of differential equations, 
Junpeng Hu*, Shi Jin, Nana Liu and Lei Zhang, arXiv: 2309.16262, Studies in Applied Mathematics, Vol 154, No.4, 
2025



Reference list for Schrodingerisation (Part I): 

Analog quantum simulation for PDEs:

- Analog quantum simulation of partial differential equations, Shi Jin, Nana Liu*, arXiv: 2308.00646, Quantum 
Science and Technology, Vol 9, 035047, 2024

- Analog quantum simulation of parabolic partial differential equations using Jaynes-Cummings-like models, Shi 
Jin, Nana Liu*, arXiv: 2407.01913, 2024

Ill-posed PDEs and inhomogeneous terms:

- Schrödingerisation-based computationally stable algorithms for ill-posed problems in partial differential equations, 
Shi Jin, Nana Liu and Chuwen Ma*, arXiv: 2403.19123, SIAM Journal on Scientific Computing (accepted 2025)

- On Schrodingerisation based quantum algorithms for linear dynamical systems with inhomogeneous terms, Shi Jin, 
Nana Liu and Chuwen Ma*, arXiv: 2402.14696, 2024



Reference list for Schrodingerisation (Part I): 

Boundary conditions: 

- Quantum simulation for partial differential equations with physical boundary or interface conditions, Shi Jin*, 
Xiantao Li*, Nana Liu*, Yue Yu*, Journal of Computational Physics, Vol 298, 112707, 2024
- Quantum Simulation for Quantum Dynamics with Artificial Boundary Conditions, Shi Jin*, Xiantao Li*, Nana Liu*, Yue 
Yu*, arXiv:2304.00667, SIAM Journal on Scientific Computing, Vol 46, Issue 4, B40-B421, 2024

- Quantum framework for simulating linear PDEs with Robin boundary conditions, Nikita Guseynov*, Xiajie Huang*, 

Nana Liu*, arXiv: 2506.20478, 2025 

Ill-posed PDEs and inhomogeneous terms:

- Schrödingerisation-based computationally stable algorithms for ill-posed problems in partial differential equations, 
Shi Jin, Nana Liu and Chuwen Ma*, arXiv: 2403.19123, SIAM Journal on Scientific Computing (accepted 2025)

- On Schrodingerisation based quantum algorithms for linear dynamical systems with inhomogeneous terms, Shi Jin, 
Nana Liu and Chuwen Ma*, arXiv: 2402.14696, 2024



Overview of summer lectures on Schrodingerisation 
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PART II: Special topics

• Nonlinear ODEs and PDEs

• Uncertain ODEs/PDEs

• Non-autonomous mapped to autonomous PDEs

• Application to linear algebra, ground state and thermal state preparation



Overview of summer lectures on Schrodingerisation 
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PART III: Examples session (flexible)! 

• Any of the special topics in Part II in more depth

• Going through some examples and explicit circuits 

• Introducing UnitaryLab: software for quantum simulation for PDEs

• Extra topics (a) quantum thermal state preparation for optimization 
(b) quantum algorithm for algebraic Riccati equation (application to 
learning problem)  

 



Preparation for using UnitaryLab software: 
To install today (available in French)!

https://randbatch.com:8443/unitarylab/index.html
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Installing UnitaryLab software
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 Activation required on first launch  

• Copy your   Device ID   from the pop-up

• Email it to:   hjp3268@sjtu.edu.cn  with subject: pdeClient Activation 
Request

• You’ll receive activation code within 24h

• Paste the code to unlock full features



Installing UnitaryLab software

108

Installing the software directly:

https://sjtueducn-
my.sharepoint.com/:f:/g/person
al/hjp3268_sjtu_edu_cn/EuSUbJ
PRn91DvISg68OquLQBjwY06S-
ee8adqxYY5BEoVw



Thank you and welcome to visit us in Shanghai Jiao Tong!

Shanghai Jiao Tong 
University:

Institute of Natural 
Sciences

University of 
Michigan-Shanghai 
Jiao Tong Joint 
Institute 

Nana.Liu@quantumlah.org

109

www.nanaliu.weebly.com

Group website:
https://www.quantumquintet.com/

Open postdoc positions available! 

https://www.quantumquintet.com/
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Quantum simulation of partial differential equations
via

Schrodingerisation

PART II: Special topics
Nonlinear PDEs



Overview of summer lectures on Schrodingerisation 
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PART II: Special topics

• Nonlinear ODEs and PDEs

• Uncertain ODEs/PDEs

• Non-autonomous mapped to autonomous PDEs

• Application to linear algebra, ground state and thermal state preparation



II. Nonlinear ODEs and PDEs

``Turning nonlinear ODEs and PDEs into linear PDEs”

Based on: 
“Quantum algorithms for nonlinear partial differential equations”, (arXiv: 2209.08478),
Bulletin de Sciences Mathematiques, Shi Jin, Nana Liu* 

“Analog quantum simulation of partial differential equations”,
 Quantum Science and Technology (arXiv: 2308.00646), Shi Jin, Nana Liu*
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Nonlinear 
systems

Applications in fluid dynamics (Navier-Stokes), gas 
dynamics, molecular dynamics, financial markets, 
machine learning…etc 

Unpredictability: breakdown of perturbative theory (e.g. 
Bruns: if perturbation theory converges in neighbourhood 
of one point, at other points it must diverge), chaos…etc 

Appearance of discontinuities and shock solutions and 
singularities 

Often statistical methods are employed: to understand 
ensemble behaviour (e.g. statistical behaviour of fluids)
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Is it possible to have quantum 
advantages in solving nonlinear 
ODEs and PDEs?

• What do we mean by solve?

• What do we mean by advantage?

• How do we embed the nonlinearity?
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Nonlinear ODEs and PDEs with multiple  
M initial conditions
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Classical versus quantum solutions
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Classical versus quantum solutions
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Classical versus quantum cost
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Are nonlinear 
problems 

suitable for 
quantum 

computation?

A computation is a physical 
process

Quantum computation is a 
quantum mechanical 

process

A quantum mechanical 
process is fundamentally 

linear 
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Two routes:

1) Make the 
problem look linear 

2) Don’t use 
fundamental 
quantum 
mechanics

A computation is a physical 
process

Quantum computation is a 
quantum mechanical 

process

A quantum mechanical 
process is fundamentally 

linear 
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Two routes:

1) Make the 
problem look linear 

2) Don’t use 
fundamental 
quantum 
mechanics
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Two routes:

1) Make the 
problem look linear 

2) Don’t use 
fundamental 
quantum 
mechanics

A computation is a physical 
process

Quantum computation is a 
quantum mechanical 

process

A quantum mechanical 
process is fundamentally 

linear 
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Making nonlinear problem look linear
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Making nonlinear problem look linear
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Making nonlinear problem look linear

16



Making nonlinear problem look linear
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Basic roadmap:
Making nonlinear 

problem look linear
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Basic roadmap:
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Part A: Hamilton-Jacobi 
and hyperbolic PDEs
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Some applications 

Optimal control

Machine learning 

Semiclassical limit of the Schrodinger equation

Geometric optics

Mean-field games

Front propagation 

Sticky particles or pressureless gases 

KPZ equations 
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Types of methods
Solution and method Advantages Disadvantages 

Viscosity solution 
(direct numerical substitution) 

Weaker notion of solution Not valid when linear superposition 
principle not obeyed ( e.g. high 
frequency limit of wave equations)

Multivalued solution
(Ray tracing)

Simplicity: solving ODEs Numerical accuracy not easily 
guaranteed 

Multivalued solution
(Moment methods)

N/A Not easy to derive for high-
dimensional systems 

Multivalued solution
(Level set methods)

Globally valid solution Curse of dimensionality 
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Level set 
mapping

Level set function lives in a space with ~twice 
the dimension

[5] S. Osher and J. Sethian, 1988; S. Jin and S. Osher 2003
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Level set 
mapping

Level set function lives in a space with ~twice 
the dimension
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Level set 
mapping
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Level set 
mapping
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Level set 
mapping
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Physical 
observables
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Physical 
observables
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Physical 
observables
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Physical 
observables
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Physical 
observables
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Physical 
observables

Many other examples:

High-frequency limits of general hyperbolic systems
1) Geometric optics
2) Maxwell equations in isotropic medium
3) Elastic waves
4) Dirac equation
5) …etc 
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Physical 
observables

Level-set encoding is important: Amplitude-
encoded solution in u requires the extra 
computation of the Jacobian, but level-set 
solution takes this into account automatically! 
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Level set 
mapping

Level set function lives in a space with one more dimension
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Level set 
mapping

1. Direct simulation without Schrodingerisation is already sufficient
2. Linear hyperbolic PDEs require only Gaussian operations
3. Nonlinear hyperbolic PDEs require non-Gaussian operations
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Part B: General 
nonlinear PDEs

39
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Nonlinear 
mapping

If F is nonlinear (i.e. nonlinear ODE)
then we must go beyond Gaussian operations

41



System of D nonlinear ODEs

42



arXiv: 2308.00646
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Reference list for Part II: Nonlinear PDEs

Nonlinear PDEs:

- Analog quantum simulation of partial differential equations, Shi Jin, Nana Liu*, arXiv: 2308.00646, Quantum Science 
and Technology, Vol 9, 035047, 2024>> for nonlinear PDE and ODE algorithms based on the techniques introduced in 
the following papers (written prior to Schrodingerisation):

- Quantum algorithms for computing observables of nonlinear partial differential equations, Shi Jin, Nana Liu*, arXiv: 
2022.07834, Bulletin des Sciences Mathematiques, Vol 194, 103457, 2024

- Time complexity analysis of quantum algorithms via linear representations for nonlinear ordinary and partial 
differential equations, Shi Jin, Nana Liu, Yue Yu*, Journal of Computational Physics, Vol 487, 112149, 2023
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Problems become `simpler’ by lifting to a higher dimension!

Extra cost in quantum simulation of extra K dimensions costs 
only O(K) and not exponential in K. 

Might be classically more costly…but can potentially be more 
efficient with quantum simulation! 

1. Schrodingerisation: Linear non-Schrodinger’s equations become 
Schrodinger-like equations

(e.g. dissipative equations become conservative equations)

JUST ADD ONE DIMENSION

2. . nonlinear problems become linear

DEPENDS ON PDE

3. Linear uncertain problems with L uncertain variables become 
deterministic

JUST ADD L DIMENSIONS 

4. Linear non-autonomous systems become linear autonomous 

JUST ADD MAX TWO DIMENSIONS
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Classical computation: suffers from 
curse of dimensionality

Quantum computation: can resolve 
curse of dimensionality for PDEs

dimensional reduction
coarse graining
mean-field approximations
moment closure
……

lift to a higher dimension 
(but not too high) 

Our philosophy: problems become 
simpler by lifting to higher dimension 

High-dimensional problems
Linear/certain/autonomous/
simpler

Low-dimensional problems
Nonlinear/uncertain/non-
autonomous/other issues
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Reference list for Part II: Nonlinear ODEs/PDEs

Nonlinear PDEs:

- See << Analog quantum simulation of partial differential equations, Shi Jin, Nana Liu*, arXiv: 2308.00646, Quantum 
Science and Technology, Vol 9, 035047, 2024>> for nonlinear PDE and ODE algorithms based on the techniques 
introduced in the following papers (written prior to Schrodingerisation):

- Quantum algorithms for computing observables of nonlinear partial differential equations, Shi Jin, Nana Liu*, arXiv: 
2022.07834, Bulletin des Sciences Mathematiques, Vol 194, 103457, 2024

- Time complexity analysis of quantum algorithms via linear representations for nonlinear ordinary and partial 
differential equations, Shi Jin, Nana Liu, Yue Yu*, Journal of Computational Physics, Vol 487, 112149, 2023



Overview of summer lectures on Schrodingerisation 
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PART II: Special topics

• Nonlinear ODEs and PDEs

• Uncertain ODEs/PDEs

• Non-autonomous mapped to autonomous PDEs

• Application to linear algebra, ground state and thermal state preparation



Appendix Slides
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Schrodingerisation formulation:
any linear PDE becomes a Schrodinger-like equation in one 
higher dimension in a very simple way 

50

We provide a simple recipe: Given any linear system of ODEs or PDE we find the corresponding 
quantum system; and given any quantum system, can find corresponding linear ODE/PFE



Block-encoding method 

51



Computing 
physical 

observable
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Computing 
physical 

observable
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Computing 
physical 

observable
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Computing 
physical 

observable
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Computing 
physical 

observable
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Theorem: Computing observables of 
nonlinear Hamilton-Jacobi PDEs
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Theorem: Computing observables of 
scalar hyperbolic PDEs
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Level-set encoded solution can give observables 
that amplitude-encoded solutions cannot

Level-set encoding:  

Amplitude encoding:  
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Level-set encoded solution can give observables 
that amplitude-encoded solutions cannot

Level-set encoding:  

Amplitude encoding:  

Amplitude-encoded solution requires the extra 
computation of the Jacobian 
but level-set solution takes this into account automatically! 

60



Theorem: Computing observables of 
nonlinear ODEs

61
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Advantage with respect to number of initial conditions

1. Using the linear representation method: will get quantum advantage with respect to 
number of initial conditions. Classical algorithm is linear in this number and quantum algorithm
is independent of this number!

2. Applications: 

Running numerical simulations with many differential initial data: e.g. Monte-Carlo,
Stochastic collocation, Rayleigh-Taylor instability

Uncertainty quantification

63
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II. Uncertain ODEs and PDEs

``Turning uncertain PDEs into certain PDEs”

Based on: 
“Analog quantum simulation of partial differential equations”,
 Quantum Science and Technology (arXiv: 2308.00646), Shi Jin, Nana Liu*

“Quantum algorithms for uncertainty quantification: applications to partial differential 
Equations” (arXiv: 2209.1120), Francoise Golse, Shi Jin, Nana Liu*

“Quantum algorithms for stochastic differential equations: a Schrodingerisation 
approach”, Shi Jin, Nana Liu, Wei Wei*, arXiv:2412.14868, 2024, Journal of Scientific 
Computing, Vol 104, no. 56, 2025 



Uncertain PDE: Method 1

- have knowledge of the distribution where stochastic variables are 
sampled

4



Uncertainty quantification

• One of the most active areas in scientific computing, applied 
mathematics and data science 

• Our PDE problem: coefficients are modelled stochastically 

• Many samples M needed to get an ensemble average 

• Classically can be intractable if M is high and the number of 
stochastic variables can also be high 

• Is there a way of directly capturing ensemble-averaged quantities 
without solving PDE multiple M times?

5



Quantum stochastic galerkin method 

arXiv: 2308.00646

• Would like a method that does not require the cost of implementation to scale exponentially with the 
number of stochastic variables L: preferably only linearly. 

• If in addition we have knowledge of the actual underlying distribution itself, we want to the method 
to be independent of the number of samples M of the underlying distribution

• Want a method that is ‘natural’ for implementation on physical systems 

6



Quantum stochastic galerkin method 
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Quantum stochastic galerkin method 
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Quantum stochastic galerkin method 

9



Quantum stochastic galerkin method 

10



Schrodingerisation formulation:
any linear PDE becomes a Schrodinger-like equation in one 
higher dimension in a very simple way 

11

We provide a simple recipe: Given any linear system of ODEs or PDE we find the corresponding 
quantum system; and given any quantum system, can find corresponding linear ODE/PFE



Quantum stochastic galerkin method 

12



Quantum stochastic galerkin method 

13



New method naturally suited to particle number measurements!
Sufficient for these measurements to recover statistics 

14
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Uncertain PDE: Method 2

- do not know the distribution from which the stochastic 
variables are sampled

16



New method 2: related to warped phase transformation

arXiv: 2209.1120

Warm-up example: 
heat equation with 
uncertain diffusion

New method 1

17



Uncertain heat equation 

18



Uncertain heat equation 

19



20
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Problems become `simpler’ by lifting to a higher dimension!

Extra cost in quantum simulation of extra K dimensions costs 
only O(K) and not exponential in K. 

Might be classically more costly…but can potentially be more 
efficient with quantum simulation! 

1. Schrodingerisation: Linear non-Schrodinger’s equations become 
Schrodinger-like equations

(e.g. dissipative equations become conservative equations)

JUST ADD ONE DIMENSION

2. . nonlinear problems become linear

DEPENDS ON PDE

3. Linear uncertain problems with L uncertain variables become 
deterministic

JUST ADD L DIMENSIONS 

4. Linear non-autonomous systems become linear autonomous 

JUST ADD MAX TWO DIMENSIONS

22



Classical computation: suffers from 
curse of dimensionality

Quantum computation: can resolve 
curse of dimensionality for PDEs

dimensional reduction
coarse graining
mean-field approximations
moment closure
……

lift to a higher dimension 
(but not too high) 

Our philosophy: problems become 
simpler by lifting to higher dimension 

High-dimensional problems
Linear/certain/autonomous/
simpler

Low-dimensional problems
Nonlinear/uncertain/non-
autonomous/other issues

23



Reference list for Part II: Uncertain PDEs

Uncertain PDEs:

- Section 6 in << Analog quantum simulation of partial differential equations, Shi Jin, Nana Liu*, arXiv: 2308.00646, 
Quantum Science and Technology, Vol 9, 035047, 2024>>

- Quantum algorithms for uncertainty quantification: application to partial differential equations, Francoise Golse, Shi 
Jin, Nana Liu*, arXiv: 2022.112200, SCIENCE CHINA Physics, Mechanics & Astronomy (SCPMA) (accepted 2025)
-
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II. Non-autonomous PDEs

``Turning linear non-autonomous PDEs into linear autonomous PDEs”

Based on: 
“Quantum simulation for time-dependent Hamiltonian – with applications to non-autonomous 
ordinary and partial differential equations,” Journal of Physics A (arXiv: 2312.02817), 
Yu Cao, Shi Jin, Nana Liu*
  
+ using above scheme to unify different quantum simulation schemes for non-autonomous PDEs
“A unifying framework for quantum simulation algorithms for time-dependent Hamiltonian 
dynamics,” arXiv:2411.03180, Yu Cao, Shi Jin, Nana Liu* 3



Schrodingerisation formulation:
any linear PDE becomes a Schrodinger-like equation in one 
higher dimension in a very simple way 

4

We provide a simple recipe: Given any linear system of ODEs or PDE we find the corresponding 
quantum system; and given any quantum system, can find corresponding linear ODE/PFE



Ordinary and partial differential equations across multiple scales

5



General applications of time-dependent Hamiltonian simulation

6



Time-independent Hamiltonian simulation is well-studied 

7

Analogue quantum simulation: evolution 
in continuous time

Digital quantum simulation: evolution in 
discrete time

• Many different well-studied 
algorithms available  



How to simulate evolution due to a time-dependent Hamiltonian?

8



Time-dependent Hamiltonian simulation less well-studied  

9

Analogue quantum simulation: evolution 
in continuous time

Digital quantum simulation: evolution in 
discrete time



Changing non-autonomous Schrodinger’s equation to autonomous 
Schrodinger’s equation

10



Changing non-autonomous Schrodinger’s equation to autonomous 
Schrodinger’s equation

11



Non-autonomous unitary evolution can be made equivalent to 
autonomous unitary evolution in one higher dimension 

12



Retrieval of solution for the original non-autonomous Schrodinger equation

13



Retrieval of solution for the original non-autonomous Schrodinger equation

14



Imperfect quantum clock register 

15



Error estimates 

16



Simple quantum protocol: unitary system 

17



General non-autonomous linear PDE

18



Turning general linear non-autonomous system to an 
autonomous system with unitary dynamics

19



Turning general linear non-autonomous system to an 
autonomous system with unitary dynamics

20



Schrodingerisation formulation:
any linear PDE becomes a Schrodinger-like equation in one 
higher dimension in a very simple way 

21

We provide a simple recipe: Given any linear system of ODEs or PDE we find the corresponding 
quantum system; and given any quantum system, can find corresponding linear ODE/PFE



Turning general linear non-autonomous system to an 
autonomous system with unitary dynamics

22



Retrieval of solution of original non-autonomous linear PDE

23



Simple quantum protocol: non-unitary system 

24



Example: 1D Fokker-Planck equation 
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Example: 1D Fokker-Planck equation 
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Example: 1D Fokker-Planck equation 

27



Unifying framework for digital quantum 
simulation for time-dependent 
Hamiltonians

28



Messy literature for dealing with time-dependent Hamiltonians 
(mostly digital protocls) … is there a way of unifying them? 

29



Analogue algorithms as a starting point to identify new digital algorithms

30

Continuous formulations are exact:

• Different numerical schemes for PDEs arise from the original continuous 
formulation of the PDE itself 

• Different digital quantum algorithms for PDEs arise from the different 
methods of discretising the position and momentum operators in 
Schrodingerisation in its continuous formulation 

• A continuous formulation for time-dependent Hamiltonian simulation can 
similarly be discretised in different ways to give different digital algorithms



Analogue algorithms as a starting point to identify new digital algorithms

31



Discretising the imperfect clock register

32



Discretising the imperfect clock register 

33



Recovering the product formula (I) 

34



Recovering the product formula (I) 

35



Recovering the product formula (II) 

36



Recovering the product formula (II) 

37



Recovering the multi-product formula

38



Recovering qDrift

39



Discovering higher performance time-dependent Hamiltonian 
simulation methods

40



Summary of recovering old and discovering new schemes 

41



Summary of recovering old and discovering new schemes 

42



Summary of recovering old and discovering new schemes 

43



Problems become `simpler’ by lifting to a higher dimension!

Extra cost in quantum simulation of extra K dimensions costs 
only O(K) and not exponential in K. 

Might be classically more costly…but can potentially be more 
efficient with quantum simulation! 

1. Schrodingerisation: Linear non-Schrodinger’s equations become 
Schrodinger-like equations

(e.g. dissipative equations become conservative equations)

JUST ADD ONE DIMENSION

2. . nonlinear problems become linear

DEPENDS ON PDE

3. Linear uncertain problems with L uncertain variables become 
deterministic

JUST ADD L DIMENSIONS 

4. Linear non-autonomous systems become linear autonomous 

JUST ADD MAX TWO DIMENSIONS

44



Classical computation: suffers from 
curse of dimensionality

Quantum computation: can resolve 
curse of dimensionality for PDEs

dimensional reduction
coarse graining
mean-field approximations
moment closure
……

lift to a higher dimension 
(but not too high) 

Our philosophy: problems become 
simpler by lifting to higher dimension 

High-dimensional problems
Linear/certain/autonomous/
simpler

Low-dimensional problems
Nonlinear/uncertain/non-
autonomous/other issues

45



Reference list for Part II: Non-autonomous PDEs

Non-autonomous PDEs:

- Quantum simulation for time-dependent Hamiltonians -- with applications to non-autonomous ordinary and partial 
differential equations, Yu Cao, Shi Jin and Nana Liu*, arXiv: 2312.02817, Journal of Physics A, Vol 58, 155304, 2005

- A unifying framework for quantum simulation algorithms for time-dependent Hamiltonian dynamics, Yu Cao*, Shi Jin 
and Nana Liu*, arXiv: 2411.03180, 2024
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II. Linear algebra, ground state and thermal state 
preparation

``Turning iterative solvers into ODEs”

Based on: 
“Quantum simulation of discrete linear dynamical systems and simple iterative methods
in linear algebra via Schrodingerisation,” (arXiv:2304.02865), Proceedings of the Royal 
Society A, 2024, Shi Jin and Nana Liu*

“Quantum simulation of partial differential equations via Schrodingerisation”,
Physical Review Letters (arXiv: 2212.13969), Shi Jin, Nana Liu, Yue Yu

3



Linear systems of equations

• Classical methods - 

Iterative algorithms: e.g. Jacobi method

Other algorithms: e.g. Classical Gaussian elimination

 

• Most well-known early quantum example -

Harrow, Hassidim and Lloyd HHL (2009): 

4



Application of Schrodingerisation to linear algebra 

arXiv:2304.02865

Solve linear algebra problems iteratively:

5



Application of Schrodingerisation to linear algebra  

6



Application of Schrodingerisation to linear algebra 

Solve linear algebra problems iteratively:

Iterative systems are discrete-time limits of dynamical systems… 
Now we can simulate dynamical systems with quantum simulation!

7



Quantum linear systems of equations 

• Quantum Jacobi method

8



Schrodingerisation formulation:
any linear PDE becomes a Schrodinger-like equation in one 
higher dimension in a very simple way 

9

We provide a simple recipe: Given any linear system of ODEs or PDE we find the corresponding 
quantum system; and given any quantum system, can find corresponding linear ODE/PFE



Quantum linear systems of equations: analog simulation 

10



Quantum linear systems of equations: analog simulation 

11



Quantum linear systems of equations: analog simulation 

12



Quantum linear systems of equations: analog simulation 

13



Quantum linear systems of equations: digital simulation 

14



Application to ground state preparation: analog algorithm 

15



Application to ground state preparation: digital algorithm 

16



Application to thermal state preparation: digital algorithm 

17



Maximum eigenvector and eigenvalue: analog algorithm 

18

• Quantum power method



Maximum eigenvector and eigenvalue: digital algorithm 

19

• Quantum power method



NOTE: All previous algorithms can have up to exponential 
improvement in error epsilon using modified ancilla initial state

20



Reference list for Part II: Linear algebra, ground state 
and thermal state preparation 

Linear algebra, ground state and thermal state preparation 

- Quantum simulation of discrete linear dynamical systems and simple iterative methods in linear algebra via 
Schrodingerisation, Shi Jin, Nana Liu*, arXiv: 2304.02865, Proceedings of the Royal Society A, Vol 480, 20230370, 
2024

- Quantum preconditioning method for linear systems problems via Schrodingerisation, Shi Jin*, Nana Liu* and 
Chuwen Ma*, Yue Yu*, arXiv: 2505.06866, 2025

- On Schrodingerisation based quantum algorithms for linear dynamical systems with inhomogeneous terms, Shi Jin, 
Nana Liu and Chuwen Ma*, arXiv: 2402.14696, 2024

- Quantum simulation of partial differential equations via Schrodingerisation, Shi Jin, Nana Liu*, Yue Yu, arXiv: 
2212.13969, Physical Review Letters, Vol 133, 230602, 2024 

21
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