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Looking beyond
classical infrastructure...

Reaching classical bottlenecks in

* Size of chips (Moore’s law)
 Communication (bandwidth)
* Energy cost

* Memory

* Time

KEY MESSAGE:

Our computational techniques and
mathematical language must change
when the underlying physical
infrastructure changes!




Quantum simulations can efficiently simulate quantum systems

After a
certain
time?

u(0)) = U(#)|u(0)) = |u(?))

U(t) is unitary: U(t)TU(t) — 1 N 2-level systems (qubits)

Classical vector: 2% entries



Ordinary and partial differential equations across multiple scales

Time
A
Continuum Theory
o (Navier-Stokes Eq)
Kinetic Theory
10™$ 4 (Boltzmann’s Eq) Schrodinger’s equation
! Molecular Dynamics dlu(t
10~10g 4 AU
: (Newton’s Eq) l |d(t ) = H(?)|u(?))
107285 4 O s By [u(t)) = U®)u(0))
T T T T ~—
1A 1nm 1um 1m 4



Quantum simulation of ODEs and PDEs

(%]

Molecular dynamics, particle swarm, electrical networks...etc

(d + 1)-dim PDEs

a%ik] | F(u[’“],Vu[k],VQU[k],...) — 0 o e Rrd

Fluid dynamics, financial market behaviour, machine learning...etc

To put onto
quantum
hardware:

How to map onto
Schrodinger’s
equationina
simple way?

Schrodingerisation!



Overview of summer lectures on Schrodingerisation

PART I: Basics of Schrodingerisation (today and tomorrow)

Flexible method for mapping linear PDEs to a corresponding Schrodinger
equation in one higher dimension

e Continuous space and time formulation (analogue)
* Discrete space formulation (digital)

* Homogeneous

* Inhomogeneous

* Higher-order time derivatives

* lll-posed linear PDEs

* Boundary conditions

* Improving algorithm with respect to precision



Overview of summer lectures on Schrodingerisation

PART Il: Special topics (tomorrow and day after)

* Nonlinear ODEs and PDEs

e Uncertain ODEs/PDEs

 Non-autonomous mapped to autonomous PDEs

* Application to linear algebra, ground state and thermal state preparation



Overview of summer lectures on Schrodingerisation

PART lll: Examples session (flexible)!

Any of the special topics in Part Il in more depth

* Going through some examples and explicit circuits

* Introducing UnitaryLab: software for quantum simulation for PDEs
e Extra topics (a) quantum thermal state preparation for optimization

(b) guantum algorithm for algebraic Riccati equation (application to
learning problem)



Formulation of differential equations versus linear algebra

e -

Partial differential equation Continuous Continuous

Ordinary differential equation Continuous Discrete

Linear algebra Discrete Discrete



4 classe ays of using quantum
harc S simulators

“




Do we choose space and time to be continuous or discrete
during simulation? Depends on the quantum platform!

_ Continuous/analog Discrete/digital

Space
(data encoding)

Time
(data processing)

Continuous variable guantum
states, qumodes

(infinite dimensional vectors;
acted on by operators)

Continuous-time and analogue
quantum simulation

(matrix language or operator
language, depending on data
encoding)

Qubits, qudits

(finite dimensional vectors;
acted on by matrices)

Digital quantum simulation

(matrix language or operator
language, depending on data
encoding)

11



Digital guantum information: matrix language

_® &
Bit 0) or |1) .4
\/
Qubit 1) % N
. a, 8 are complex-valued! N qubltS
e.g. 1°% excited state
u) = a|0) + B[1)
gf----» S e

Energy ] Born’s rule: __ oN 73; ;
Atomic energx level Probability |af? + 5] = 1 D = 2"' dimensional
Hilbert space
—_—— — Pauli operators: 9%
0) |1 0)

e.g. ground state
lons, spin systems, superconducting qubits...etc .



Typical digital quantum simulation: evolution through digital steps

Time evolution through concatenation of large number of gates

Aim to prepare: |u(t)) = )_; u;(t)|j) = exp(—iHt)|u(0))

H Hermitian D X D matrix

Programmable quantum simulator

Operations

Example: Trotter decomposition

Number of steps ~ t? /e Fault-tolerant digital

quantum simulator .




Analogue quantum information: operator language

Qumode u) = /u(x)\x}dw r e R

(continuous-variable CV)

u(x): wavefunction

2lx) = z|x) plp) = plp)
/\ﬂ? fﬂ\dﬂ?—l—/\p ) (p|dp
[z, p] = ikl

Heisenberg’s uncertainty principle

Position and momentum operators don’t commute in quantum mechanics



Analogue quantum information: operator language

Qumode u) = /u(x)\x}dw r e R

(continuous-variable CV)

u(x): wavefunction

(p|z) = exp(—izp)

Fourier transform: F|z) = |p)

Important aju(x) — T u>
correspondence p
we will use later: %u(aﬁ) — ’Lﬁ u>

Easy to do Fourier transform on optical systems (change of measurement basis)!



Analogue quantum information: operator language

Derivation of correspondence:  zu(x) — Z|u)

dz () — iplu)

The quadrature operators of a qumode are & and p, where [Z,p] = i. If we let |x) and |p) denote the eigenvectors
of & and p respectively, then (z|p) = exp(izp)/v/2m. The position and momentum eigenstates each form a complete
eigenbasis so [ dz|z)(z| = I = [ dp|p)(p|. Here the quantised momentum operator p is also associated with the spatial
derivative p <> —id/0z. One can see this easily from the same commutation relation being obeyed [z, —i0/0x]u = iu.
Suppose we define the state |0u/0z) = [(Ou/dz)|x)dr. Then it is straightforward to show iplu) = |0u/0z).
For simplicity, we ignore normalisation constants and it is 51mple to prove the followmg Let i(p) denote the

Fourier transform of u( ). Then iplu) = ?,fu(m)pkc) z = i [[u(x)p|p)(p|z)drdp = ?,ff z)p exp(—izp)|p)dxdp =

i [ u(p)plpydp = 1 [f u(p)plz’)(z’|p)dpdx’ = 1 [[ @(p)pexp(iz p)lﬂf ydz'dp = [[(9/0x")(u(p) exp(iz'p))|z’)dz’'dp =
/ 3u(:c’) [0x'|x")dx' = |6u/ Ox). Similarly (ip)"|u) = |6”u/3$”). This simple observation will be important for our
simulation of PDEs later.
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Analogue quantum information: operator language

Qumode u) = /u(x)\x}dw r e R

(continuous-variable CV) .
u(x): wavefunction

Infinite dimensional Hilbert space

Born’s rule / u(z)|?dr =1

N qumodes: |u) = [u(z1,....,xN)|T1, ..., TN )dTy...dTN

Lasers, light inside cavities, freely moving atoms...etc v



Analogue guantum simulation: evolution in continuous time

Time evolution through natural dynamics of a quantum system:
quantum control of a single Hamiltonian in continuous time

Aim to prepare: |u(t)) = e~ vy (0))
or e~y (0)) without breaking up into many gates

Systems: quantum optomechanics, superconductors, photonics, neutral atoms...etc

s

Q
| |
| |
c~

18



Quantum
simulation

U(t)|u(0))

Generating Hamiltonian
H = H
Hov = Hiy

* Analogue quantum
simulation: Nearer-term

System evolves naturally
(continuously) in time

Can readily scale to large
system sizes

Error limited by accuracy of
model used (parameter
calibration, noise...etc)

Continuous spatial degrees of
freedom also allowed: analog
(or continuous-variable)
guantum simulation

* Digital quantum
simulation: Far-term

- Evolution broken down into

elementary gates or easily
realisable Hamiltonian
evolution

Error correction and fault
tolerance: much larger system
sizes required

Programmable quantum simulator
Operations

Optlcar lattice Qubit
o EERERR Continuum from
TREEEAER analogue to digital
oW e e 9 e - >
P Vv ew e v e v
VYV VYVYVYVV

Analogue Fault-tolerant digital
quantum simulator quantum simulator

19



data encoding

ubits .. :
Q discrete continuous
digital quantum computation

Qumodes

circuit model
quantum computing continuous-variable

measurement-based quantum computing

quantum computing
quantum

: : simulation
adiabatic quantum /
computing

quantum walks quantum analogue
quantum annealing computing

Q
D
=
Q
(0]
. v—t
o

=10
=
© puy
7))
7))
3]
&
<
=
=
]
=
]
=

continuous

continuous-time quantum computation ,
arXiv: 1001.2215




OW powerfulqumodes

1 be
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Shor’s algorithm: a quantum algorithm to break RSA
requires many perfect qubits...

To factor integer N, run-time for quantum algorithm O(polylog N)

Classically to break RSA 2048-bit encryption key would take 3 x 10'* years.
The universe is around 1.4 x 1

010 years old.

4099 perfect qubits can break this in 10 seconds
For noisy systems: need 20 million qubits and 8 hours

Lots of quantum algorithms based on quantum phase estimation
and quantum fourier transforms (crucial part for factoring and
other algorithms): https://quantumalgorithmzoo.org/ -




Factoring can be powered by a single clean gumode!

N. Liu et al, 'Power of one qumode’, PRA, 2016:
Factoring a large number N E ~ N4

Exchanging number of qubits as resource for energy

of a qumode

B~ const Finding the trace of a large
Squeezed state s N x N matrix

D f éiéﬁ"éj

CU _ ez'_-';" &

MIT
Technology
Review

A View from Emerging Technology from the arXIv

Measure probability

Squeezed Light and Quantum

Squeezed state distribution of outcome Clockspeeds
input after running for time T | |
2 Why do some quantum computations require entanglement
_ 1 — 59 while others don't? Squeezed photons may hold the answer,
P = 71-% s% f € 2s |I>d3§' say physicists. 23



Problems become ‘simpler’ by lifting to a higher dimension!

Extra cost in quantum simulation of extra K dimensions costs
only O(K) and not exponential in K.

Might be classically more costly...but can potentially be more
efficient with quantum simulation!

1. Schrodingerisation: Linear non-Schrodinger’s equations become
Schrodinger-like equations

(e.g. dissipative equations become conservative equations)
JUST ADD ONE DIMENSION

2. . nonlinear problems become linear
DEPENDS ON PDE

3. Linear uncertain problems with L uncertain variables become
deterministic

JUST ADD L DIMENSIONS

4. Linear non-autonomous systems become linear autonomous
JUST ADD MAX TWO DIMENSIONS

24



vvv Our philosophy: problems become

simpler by lifting to higher dimension

Classical computation: suffers from
curse of dimensionality

dimensional reduction
coarse graining

mean-field approximations
High-dimensional problems  moment closure Low-dimensional problems
Linear/certain/autonomous/ = - Nonlinear/uncertain/non-
simpler autonomous/other issues
— T Jift to a higher dimension  —— T —
(but not too high)

Quantum computation: can resolve
curse of dimensionality for PDEs »



|. Schrodingerisation
“Turning linear non-Schrodinger’s equations into Schrodinger’s equations”

Based on:
“Quantum simulation of partial differential equations via Schrodingerisation”,
Physical Review Letters (arXiv: 2212.13969), Shi Jin, Nana Liu, Yue Yu
+ technical companion paper Physical Review A (arXiv: 2212.14703), Shi Jin, Nana Liu, Yue Yu

“Analog quantum simulation of partial differential equations”,
Quantum Science and Technology (arXiv: 2308.00646), Shi Jin, Nana Liu 2



ODEs and PDEs wit
how to map onto ec

n multiple M initial conditions:

uations of Schrodinger’s form?

D ODEs (d + 1)-dim PDEs
dXC[;](t) _ F(X[k](t)), x 'kl ¢ RD 8?55:6] | F(U[k], vu[k], v?u[kL ) — 0
x®oy=x¥ k=1,... M Wk ¢ R k=1,...M

27



Equations of Schrodinger form —
can use quantum simulation directly when evolution is unitary

D ODEs (d + 1)-dim PDEs
22 — Hu(t) 24D — (V2 4V (2))u(z, t)
H is a D x D Hermitian matrix Hey = 232 =+ V(@) — ngv
lu(t)) = €_th’U(O)> [ u(t, x)|z)dx = exp(—iHcoyt)|u(0)) oy
Discrete-variable Continuous-variable

Qubits Qumodes



Classical versus quantum solutions

Quantum solutions
Amplitude-encoded, typically...

XK (¢ = 1) < > Xt =T)|5)

Classical solutions

K]y —
uFl(t =T, 2q,...,2q) x /u (t =T, z)|z)de
< 3 dflt =T, a5 )i, da)

J155Jd




D+1 gumode quantum evolution solves D-dimensional linear PDE!

Analogue (A)

Digital (D)

Quantum

(Q)

PDEs mapped to
continuous quantum
systems

Quantum cost linear in dimension
No discretisation necessary

Discretised PDE
mapped to
qubit dynamics

Quantum cost poly in dimension
and logarithmic in N

Classical

(C)

For PDESs, often need to
discretise spatially first
into a system of ODEs

For PDEs, can have
curse-of-dimensionality




* No need to discretise the PDE (derivatives in time,
derivatives in space...etc)

e Can potentially utilise existing Hamiltonians without
breaking up into many gates, e.g. like in analogue

Benefits of quantum simulation
analogue

* Mimicking the history of classical computing...classical
qua Nntum computing also evolved from analog to digital before
: . error-correction was well-developed. Today analog is
simulation for making a comeback in classical computing too
PDEs

* Touches on foundational questions, more directly, on
how one physical system can emulate another

* Simpler formulation and easier when learning for the first
time: good for seeing the structure of the Hamiltonian

31




Linear partial differential equations:

warm-up example with heat equation

% = Lu Linear operator L
Examples :

Schrodinger: £ = —i(—V3 + V(x))
Heat with force term: [ — _(_Vg7 +V(x))



Schrodingerisation and the warped phase transformation

Increase problem by one dimension (‘warped phase space’)

Warped phase transformation: w(t,z,€) = e Su(t, x) >0

w ou
w_ | E — Cu

u= [ itz )
/\< L=—(-V2+V(z))
¢ Recover u(t, x): u(t,z) = /OO w(t, x, £)dE

or u(t,z) = e¢ w(t,x,&*), £* >0




Heat equation in ‘warped phase space’

ow > ow
(L V i
Ot ( va " (x)) &ﬁ 5 c (—oo, oo)

w(0,z,8) = e 1%lu(0, z)

Before we had w(0,z,§) = e “u(0,z) for £ > 0. Here w moves from right
to left along &, so no boundary condition is needed at & = 0. We can extend
the initial data w(0,z,£) and w to £ < 0 since the solution does not impact
the region £ > 0. This extension to £ € (—o0,00) is necessary for the Fourier

transform step .



Take Fourier transform to make into

Schrodinger-like equation

Fourier transform in & @ (T2 ~
i 5 (—Vz +V(x))w
wlt.a,) = [ it mdy (0, 2,m) = 1/(x(1 +72))u(0, z)

Schrodinger’s equations for each Fourier mode n: t — nt

35



Schrodingerisation in continuous-variable

implementation

. T — T
i =n(=Vi+ V()@ n— 1
(0, z,m) = 1/(x(1 + 7%))u(0, =) 0 b

ox

(1)) o / / (t, 2, n)|2)|n)dedny o exp(—iHey )@ (0))

Example: Hoy = (p° +V(2)) @ 1

n can act like any quadrature, e.g. 1 =2

36



Recovering the state u

Recover u(t, x): u(t,z) = /OO w(t, x, &)dE
0
or u(t,z) = et w(t,z, &), E* >0

Inverse quantum Fourier transform |w(t)) — |w(t)) o< [ [ w(t,x,&)|z)|€)dE
Recover |u(t)) < [ u(t, z)|z)dz:
Projective measurement onto |w(t)) using either P = [~ |£)(£|d¢

P =" > 0){€" > 0]

Probability of success o ||u(t)]|?/||u(0)||?
Algorithm has an in-built way to compute normalisation constant!



General methodology

Linear homogeneous PDE Z Z api (21, o°

. IED) u—|—b(£E1,..,£ED)U=0

K™ _order derivatives, D spatial dimensions k=1j=1
ar,; < 0 for £ even

du
dt

K D A
A =3 ay (@1, &p)i"3pE — ib(i1, ..., 3 D) L = &Ly
k=1 j=1 ak

= —iA(Z1,...,£p,P1, ..., PD)U, u(0)

k
A can also have explicit time-dependence axj .



General methodology

du

E = —?:A(ﬁl,...,iﬁp,ﬁl,...,ﬁp)u, H(O)

A=A, —iA, A =A+ANH2=A1  A,=i(A-AT)/2=A]

Hermitian part of A: Schrodinger-like equation
Anti-Hermitian part of A: heat-like equation

Original system stable if Ay > 0

39



General methodology

—_— = —iA(.’ﬁl, ...J:ﬁD:ﬁlj ...,ﬁD)U, U(O)
A=A, —iA, A =A+AN/2=A1 A,=iA-AN/2=A]

v(t) = [ [ ottaml)ndsdy

do(t)
dt

50) = [ ) = [ e €ledcu) = [2u©),  [E)= [e Mg

=—i(A;®7+ A @ D)o(t) = —iHo(t), H=A®7M+A ®I=H"

40



Implementation scheme

Just add one qumode:

"Qumodisation’

5(0)) -

- [elgas — — oo [ leele
e~ (A2®7+A1Q1)t ’

Initial ancilla state preparation

1) —— m— (1)) = ! u(t, z)|x)dx
- [u(0) () = 7 [ utt.a)la)d

Probability JtAl

=) = / e~ I¥llg) d¢ G) = ﬁim / e/ 6 de

Close to Gaussian state  [(E|G)| =~ 0.986,s ~ 0.925

D + 1 qumodes

41



Implementation scheme

Just add one qumode:

. di ion’ _ >
Qumodisation [ elgae — — oo [ leele
5(0)) - e~ (A28 A1BI)E 0

1) —— m— (1)) = ! u(t, z)|x)dx
[u(0)) () = 7 [ utt.a)la)d

Probability JtAl

Initial state preparation

1u(0)) x [ u(0,z)|x)dz can in principle be prepared for any
boundary condition in z and ¢ = 0 so long as u(0, x) is ’ smooth’ D+1 quUMO des

and lim, ., u(0,2) — 0 and ||u(0)| < oo .



Linear PDE % _ A=A, —iA,
;
Ai=(1/2)(A + AT)

Ay =(i/2)(A - AT)

Embed into qumodes

TG / u(t, z)|z)dz Schrodingerisation

o
d—‘t’ — _Hv

Initial condition

7(0) = [ e ¥le)du(o)

H=A®7+A; @ =H'

Initial condition

u(0)

Also applicable to time-dependent (non-autonomous) systems




ngerisation formulation:

PDE becomes a Schrodinger-like equation in one
ension in a very simple way

Simulated on quantum device:
H(t) =At) 97+ A1(H) @1

: Any linear system of ODEs or PDE

du(t)
dt

A =(1/2)(A + AT = Al
A; = (i/2)(A — AT) = A]

— _A(H)u(t)

n — diag(—M/2,--- ,M/2 — 1)

We provide a simple recipe: Given any linear system of ODEs or PDE we find the corresponding
quantum system; and given any quantum system, can find corresponding linear ODE/PFE



Schrodingerisation is easily applicable to not only
the four main classes of quantum devices,
but also hybrid qubit-qumode devices

data encoding

discrete continuous
digital quantum computation

circuit model

quantum computing continuous-variable
quantum computing

Q
15}
=
Q
/0]
o =i
o)

measurement-based

quantum computing
quantum

. : simulation
adiabatic quantum

computing
quantum walks quantum analogue

quantum annealing computing

=T
=
© puy
7]
7]
5]
&
=
o
=
S
~
S
=

continuous

continuous-time quantum computation




Examples of scalar homogeneous PDEs




Simplest

example

D-dimensional convection equation

ou _

ou
ot Z ajn— =0, u(0, z) = up(x), z; € RY, aj €R

D qumodes

In general, simulation of PDEs require entangling operations

and will go beyond Gaussian operations

47



Example for
ohysical

platform

Quantum optomechanical system

HOA@*+p) QI +g2 Q03+ g(p 1)

ou .0%u ou A o
5 = 53 +92% — (g1 + iAz*)u

Complex potential and convection term

48



Linear first-order PDEs

L j

D
= Za,j(:ﬁl, ...,:ﬁp)ﬁj - ’bb(iﬁl, ...,i‘D), A= Al — ZA2
j=1

= = _iHv, H=A®7+A ®I=H!

(Gaussian operations D + 1 qumodes

0
—u—|—2a3(m1, :L-D)——l—b(:nl, ,xp)u =0, a; € R,beC.

D
1
A1:§Z {pj at+ 5 ( —b)
)
A, = 5 Z[pjyaj] + 5(6* + )
=1

= (1/2) > k(&P + Pidy) ® 1

a; = constant

= 1 ATk

~

b = constant

Re(b)I ® 1 + Zj a;p; @1

S

D
b=7>_15iz;

Z;’ Re(8;)Z; ® 1)

> Re(B;)3; @ + 6

D
b= Zj,k:l VikZ;jTk

> ik Re(Vjk)Zi &k ® 1) — 305 Im (k) 28k ® 1

ij Re(vjk)Zrp; ® 1 — ij Im(vx)Z 2k @ I + )

49




Liouville equation

D
= _?;Au, A= ZGj(:ﬁl,...,ip)ﬁj A=A, —1A,
j=1

e
d_':t’z_iﬂf,, H=AQh+A QI =H"'

Example: a;(z1,...,2p) = a;Z;, a; € R
1 D A A ~ A
Ay =352 500 05(Z5D5 + Dyt;)

A, = Zle a;l D+1 qumsg)des

D ~
Ay =353 {005}
. D ~
Ay = %Zj:l[pj7aj]



Black-Scholes equation

0 1 0? 0
u-+-—02x2———-%—rx—££——ru::()

ot 2 Ox? Ox

d 1
d—;” = —idu, A= 0% +irep+rl

"
d—;’:—@ﬂf;, H=A,07+A ®I=H!

1
Ar=—(o2+0) @p+p3), Ay = 0%(&%° +p%3%) — L1

2 qumodes

51



Heat equation

D

4 D, (x1,....,.kp)=— | =0 :
ot Zaﬂii Z 7L - D)(%y’ Dij <0
1=1 J=1
du Dw - DJZ
= —iAu, A= .Zl piDyj(21, ., 2D)D;
1,j=
dv R ~ f
Ez—zﬂ’v, H=A71+A, ®I=H
A, =0

D
Ay = Y piDyj(&1,....2p)p; + V (&1, -, D) D 4+ 1 qumodes
52
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Fokker-Planck equation

ou D 5 |
F +Z:: a—(uj(mlj ey TD)U) — Z D i(z1,...,zp)u) = 0. DJ > ()
du Z Z d

1<~ . ) ) PN, ) Example: linear drift and additive noise
= 52{%:#3‘(% - Zp)} =5 Z[P;;:Dj(ml: - &D)] Wi =ciji;, c; €ER, D; =a; € RY
iz -

. D D D

i R R 1 R . 1 A A
) Z[Hj(-’b'h ,&p), P;] — Z{Py Dj(&1,...,2p)} H = 2 Z (eI - ap?) Q1N+ 5205(%295 +9;2;) @ 1.
j=1

D + 1 qumodes



Systems of linear PDEs




Systems of linear PDEs

There are at least five different reasons to consider systems of linear PDEs and this
requires either hybrid gumode-qubit systems or qubit-based systems:

 The application itself naturally has multiple variables obeying a coupled PDE

* Ascalar PDE solution can be approximated by a system of PDEs which can be
more experimentally accessible (using analogue quantum simulation)

* Higher-order time derivatives
 |nhomogeneous PDEs which can arise either
- naturally from source terms or

- through boundary conditions (in qubit-based formalism)

55



Example: Hyperbolic heat equation approach

The one-dimensional heat equation for u(t¢, x) is a second-order PDE

Hyperbolic heat equation
Goldstein-Taylor

O 0%
a_kaﬂ;&: IEER, k>0,
Ou  10v
ot €0z
ov 1 Ou 1
- — —— D<exkl

ot €dr ke’

56



Hyperbolic heat equation solution approximates

heat equation solution

Lemma 1. Let u(x,t) be the solution of Eqs. (11) and (12) with given initial conditions u(0,x), and arbitrary initial
data v(0,x) (e.g. one can choose v(0,x) = 0 without losing generality). Let u(t,x) be the solution of the heat equation
Ou(t,x) /0t = kd%u(t,z)/0x® with initial condition @w(0,z) = w(0,z). Then ||a(t,z) — u(t,z)| < O(e=?*%€2) for
t >> O(e?In(1/¢)).

ou_ _10v (11)

ot €Ox
ov 1 0u 1

57



Quantum simulation of hyperbolic heat equation

Define the infinite-dimensional vectors and their corresponding quantum states:

ult) = / u(t, )|y, v(t) = / o(t, 7)) dz

w(t) = (":gg) = 10) ® u(t) + |1) ® v(t) w(t,z) = (u(t, @), v(t, z))T
) v w(t) )] lo(®)]
W= Tuol "D Rer YO fue) T 0O RO e YO PO L6

lw@)[1* = llu@®)]* + lv(@)]*.

3w((;, z) _ (_0l ; ) awéi ) (o _2%) w(t.2)

58



Quantum simulation of hyperbolic heat equation

ow(t,z) (0 —1\ ow(t, ) 0 0
dt _(—§ 0) oz Tlo - ) vt

Our first step is to simulate |w(t)). From Lemma 1, without losing generality, we can begin with the initial conditions
u(0, ), v(0,x) = 0, which requires the initial state preparation

[w(0)) = 10) ® [u(t))-

0 — (~itor 05, - IS L) wlt) = —idu()

1 i
A:A - 'A = — T A_fx__ ]. 1 13:,
1 — 1A 60 X p k62| {1 ®
A= 2o, ®p, = Al Ay = — 11| ®1, = Al
= —0g T — ; = T = .
17 e P 1 27 ke2 2

59



Already experimentally accessible in analog quantum simulation

Apply Schrodingerisation:

A 1 1 .
H=A2®n—|—A1®1n=—2|1)(1|®1$®n—|——am®p$®ln

Electric dipole
E(t)

Jaynes-Cummings model

B(t)
Magnetic dipole
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Applications

Applications to:
1) Multidimensional heat equation

2) Black-Scholes equation: 1-dimensional (heat) and multidimensional
3) Fokker-Planck equations

....realisable in cavity and circuit QED systems

) — P>
1 qumode
0) — gy —— —|[0)0, |5 (3]
1 qudit (d-level) € ()
u(0)) — — —[u(t)), [v; (£))

_____________

d qumodes
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Applications

1 qubit and 2 qumodes

Equation Size of system Hamiltonian H interaction terms
1D heat 1 qubit and 2 qumodes 1,1, 01, 0.1, 1M, 0, 3P: 1,
1D Black-Scholes 1 qubit and 2 qumodes 1:®1, 1, 001,17, 0:®ps®1y
Oz ®ﬁm®1n, 12®ﬁw®1n
1D Fokker-Planck

d-dim Fokker-Planck

1 qudit d levels and d+1 qumodes

Same interaction terms as 1D Black-Scholes, different coefficients
2D heat 1 qudit (3 levels, qutrit) and 3 qumodes INUI®1, @79, (0)({]+17)(0]) ® p; ® 1,, j=1,2
2D Fokker-Planck 1 qutrit and 3 qumodes )G ®@1 @9, (|0){(F]+[5){0]) ®p. ®1,,[0)(0|®p. ®1,, j=1,2
3D heat 1 qudit (4 levels, ququart) and 4 qumodes NG @7, (|0)(7]+17)(0]) ®p; ® 14, j=1,2,3
3D Fokker-Planck 1 ququart and 4 qumodes NG ®1: @9, (|0){(j] + |7)(0]) ® P> ®1,,[0)(0| ®p. ® 1,,7=1,2,3
d-dim heat 1 qudit d levels and d+1 qumodes

NUl®L @9, (10Ul +[1H0)®p &1,  j=1,---,d

1)U ® 1z @9, (10)(5] +15)(0)) ® Pz @ 11, [0)(0]|® Pz @1y, j =1,--- ,d

5— P
1 qumode
0) i —0)(0l, 13) ]
1 qudit (d-level) (4 |w(t)>
u(0)) — u(8)), [0 (8))
d qumodes . memmee
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Higher-order time derivatives...second order example

d? d = . .
dt;" +I‘d" +idu=0, T=co—iY %1 ep; e I807),
j=1
I =(+r)/2=0r],r=4r-r")/2=T1,
ZZCLJ; (£1, ..., D) (ip;)" + b(Z1, ..., ED)
=1 j7=1
We can dilate the system v — y = u ® |0) + (du/dt) ® |1)
‘f;t’ ( dggjj;) _iVy, V= (2 —fr) V=Vi—iVy, A=A —iA,

Vi=(V+Vhe=viv,=iv-vhie=vl A4
_1( 0 AT4dr ) _ I ]

V1—§(A_” _i(r_r’r))—A1®0m+Az®ay—§®ay+I‘2®§(I—az),
1/ 0 AT+l _ I 1

VQ_E(AHI —i(I‘+I‘T))—A2®0’x A1®oy+ 580, —T1® (I -02).

dv _ dv
dt-l—z(ngX)T]—l—Vl@I)v -

— —iH®v,

I‘=I‘1—i1"2

] f e 1¥l¢)de —

u(0) ® [0)+ =
w0 & 1)

— A

—i(V2@h+V1®I)t

[9(0)) 7

€

=(A+ AN /2= Al A, =i(A— AN /2= Al

H=V,7+V,0I=H'

— Pso
—— [0)0]

= [u(#))
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Wave equation

5’2U Z (92u V
—_ a[ o — u
ot2 &= 7 9x?
J:]_ J
D
d2'u, . . . ) 2 ) ) . D
=7 = —1Au, A= —1 (Zl aj(Z1,...,2p)p; + V(21, ...,.’L‘D)) A, = % Z[ﬁ?’ 0
Jj= =
@ _Ho, H=V,0i+Vi®l D
5, — ¢ 3 - 2 1 ) 1 .
dt ; I Ag = 52{%‘71??}"“/
V1:A1®a$+(A2—§)®ay, VQ:—A1®ay+(A2+§)®crm j=1

D + 1 qumodes +] qubit



Unstable dynamical systems: more
general inhomogeneous PDEs and
backward-in-time dissipative linear PDEs




Unstable dynamical modes

dy
— = —B:v—B

What if some eigenvalues of B, are negative?

This has applications in
 Inhomogeneous PDEs that arise
- from natural source terms

- Inclusion of boundary conditions

e Backward PDEs

* |terative algorithms for linear algebra o



Inhomogeneous linear PDE

du A n A . . .

E = —?,A(:EIJ...ED,pl, ,pD)U—|— f(iEl, ,:CD) i /e—IEI|£>d£_ _15>0
R O ey — & — @

By dilating the system u — y = u®|0)+ f®|1) 0 1)

u(t))

dy d {u . A i ) .
E_E(f)__sz’ B_(O 0), A=A, —-iAy, B = B; — 1B,

B,=B+BY/2=Bl, B,=iB-B")/2=8BI,

Ay il)2 1 I
Blz(_“1/2 0/)=A1®§(I—I—az)+§®ay, B2=(

A, —I/2

1 I

2

dv

-, = —iH?v, H=B,®7+B:I=H'

Using the Schrodingerisation introduced so far:
For stability of the new dynamical system y, need By > 0

What if not all eigenvalues of By are positive? -



Unstable dynamics

Let B, contain D real eigenvalues ordered as Ay > Aq--- > Ap

Assume there exists A\; < 0 for some 7 between 1 and D so there are some
unstable modes (initial value problem is ill-posed)

w(0,€) =e*y(0), £>0

ow(t,§) _ B ow(t,§)
ot Y-

— iBl’iU(t, 6)
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Unstable dynamics

Theorem. The solution y(t) can be recovered from w(t, ) using

y(t) = efw(t, &),  for any £ > ¢£* (1)

or

)= [ " wit, €)de, 2)

£

where £* = max{|Ap|t,0}

|Ap|: interpreted as the maximum speed of the right-moving w solution along &

Recovers previous Schrodingerisation formalism £* = 0 when A(B3) > 0
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Modified Schrodingerisation

Identical to previous Schrodingerisation except in final measurement procedure
we post-select on £ > £*)

Recover |y(t)), use projective measurement P = |£ > £*)(£ < £*| with
probability of success o ||y(t)||?/|ly(0)||?

[ led — P = [, (&) (elde
[5(0)) - o~ i(A2@7+A1BI)t

[u(0))

. . = L u\t,xr)|r)axr
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Backward PDEs

Recall the forward heat equation: 38_'1; — _gi’gl: H(O, :L.) — ug ( m)
1 3 o — ow

Applying the warped phase transformation w = e Su = — ¢
ow __ 0% dw | Ow _ ~20w __

This means w moves from the right to the left along the ¢ dimension, so only a
boundary condition on the right is needed.
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Backward PDEs

Backward heat equation can be written in terms of v(t,z) = u(7T — t,x) where
2
Q= _0y v(0,z) = u(T, x)

Using warped phase transformation w = e %v we have %—‘:’ +D0 % =

dw __
dt BQW

This means that all the motion along ¢ is going from left to right and the
eigenvalues of By = —p? < 0
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Backward PDEs

To use our theorem for unstable dynamics, need |A(B3)| < oo hence need to
impose max |[Ap| = p? . and choose £* = p2 T in the following

Theorem. The solution y(t) can be recovered from w(t, ) using
y(t) = efw(t, &), for any £ > &* (1)

or

y(t) = e’ j B w(t, £)de, (2)
f*
where £* = max{|Ap|t, 0}

Possible strategies:

(1) Input data (fourier transform) has compact support, so corresponding |pqz| <

oo. If u(T,x) is smooth in x, the Fourier mode decays rapidly and truncation
in momentum is possible.

(2) Numerical discretisation of = then discretise its derivative, so |Ap| < O(1/(Ax)?) 73



Discretisation of gumodes




Discretising gumodes

Possible qumodes to discretise:

* We can choose to discrete only the qumodes for spatial degrees of freedom for the PDE
* We can choose to discretise only the ancilla qumode

* We can discretise all the gumodes
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Different numerical schemes

H(t) = Ax(t) @7+ A1(H) ® 1

Discretising main qumodes: discretising A, Ao operators

z — diag(—N/2,--- ,N/2 - 1)

A .0 : : :

p = —za— — N X N matrix representation dependent on numerical scheme
T

Note: p? = —% discretised in matrix form does not necessarily correspond to

the square of previous matrix

Discretising ancilla qumode: n—mn;, ¢=0,---,M 17— diag(—M/2,--- ,M/2-1)
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Different numerical schemes: finite difference methods examples

ulx =x;) = u;
i= (i1, - ,ip), i;=0,---,N—1, N=0Q1/Az), j=1,---,D

Type |Der. order|Acc. order Formula
Backward First First ou o “=1 4+ O(Axz)
Forward First Second Gu = _”"Jrzz%;*l_?’ui + O((Azx)?)
Central First Second cu = L + O((A)?)
Backward| Second First % N u"_zz'&;l)jui” + O(Ax)
Central Second Second % = ui_l?g%iu”l + O((Ax)?)
Forward | Second Second % = 2”"_5””(1;54;;"”_””3 + O((Ax)?)
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Costs: simulating 1D advection equation to fidelity 0.9

Table I: Quantum Gate Requirements for Different Qubit Numbers for the Hamiltonian simulation task @D fo the 1

dimension case. The terminate fidelity of e** |u(0)) and the classical solution F' = 0.9.

Qubit Number

Number of 1-Qubit Rotations

Number of C-NOT's

Single Gate Fidelity Required

p—
o © 0o G

6080
17664
48384
126976
322560
798720

4800
14208
39424
104448
267264
665600

1 —9.68 x 1076
1—3.31x10"6
1—1.20 x 10~
1—4.55x 1077
1—-1.79 %107
1—7.20x10"8

Compare: using qumodes we can already simulate to a 200,000 dimensional problem




Costs: simulating 1D hyperbolic heat equation to fidelity 0.9

Table I: Quantum Gate Requirements for Different Qubit Numbers for the Hamiltonian simulation task dlb We
used € = 0.1; and the terminate fidelity of et [4(0)) and the classical solution F' = 0.9.

Qubit Number|Number of 1-Qubit Operations/ Number of C-NOTs|Single Gate Fidelity Required
5 27937725 12642950 1—2.60x107°
6 72731830 33302709 1—9.94 x 10710
7 180174053 83433274 1—4.00x 10710
8 431477111 201882772 1—1.66 x 1010
9 1008194862 476169231 1—710x10"1
10 2312161227 1101341794 1—-3.09x 101

Compare: using qumodes it is already within experimental possibility to simulate this equation
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Boundary conditions and
iInhomogeneous PDEs




Artificial boundary conditions

Simulating time-dependent quantum dynamics (e.g. emission of electrons) usually would
require large computational domains. If one limits the computational domain and allow
reflecting boundary conditions, this would cause interference with the solution in the
domain, so need suitable boundary conditions to absorb outgoing wave-packets. These are
artificial boundary conditions. For example using CAP:

Complex absorbing potentials: i% = Hy(t,x) + W(x)y(t, x) r€eD

W (zx) is selected so W (x € 2) = 0in computational domain {2 and has a negative
imaginary part with magnitude decreasing away from 0f2 so wavefunction at
absorbing layer D\{2 boundary can be set to zero.

Other methods (also having computational domain and including a buffer layer): Perfectly
matched layers (PML) and Dirichlet-to-Neumann map (DtN) o



Physical boundary conditions

Dirichlet and von Neumann (and Robin) boundary conditions turns discretised
homogeneous PDEs into inhomogeneous PDEs:

2 e Divide [0, L] into N + 1 intervals (i.e., N + 2 points)
Example @ — O‘!a—?:, £ E [0, L], t > 0 * Grid points: zg = 0, zy,. .., IN;TN+1 = L
6t 63; o Letu;(t) =~ u(wi,t)

Central difference: For internal points 1 = 1,--- , NV:
Fuwin—2utu., Iy  du_ o
T dt ~ (Agyr Wt T 2T )

Dirichlet BCs: u(0,t) = A, u(Ll,t)=B=>uy=A, uy; =B

82
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Inhomogeneous linear PDE

du A a A . . . C [ el — —
- = —iA(Z1,...2p, D1, -, PD)u + F(£1,...,2D) /e £)as Pso

50)) - S L —
By dilating the system v — y = u®|0)+ f®|1) u+(2)§||1?)

[u(t))

Z—?z%(?)z—iBy, Bz(‘g “(f), A=A, —iA;, B=B,—iB.,
B, =B+BY/2=Bl, B,=iB-B")/2=BI,
Ay —1/2

_ Ay ?,I/Q _ 1 I _ B 1 I

‘%:-iﬂa, H=B;®7+B,®I=H'
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Near-optimal strategies in precision




Schrodingerisation: simplest ancilla initial state

Warped phase transformation: w(t,z,€) = e u(t, x) E>0

This in itself does not specify the conditions for & < 0. Previously we chose the
initial condition:

w(0,z,£) = e_|£|u(0,a:) £ € (—00,00)
This exhibits first-order convergence in £ due to the lack of regularity of exp(—|£|)

The maximum absolute value among the discrete Fourier modes: 7, = O(1/€)
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Schrodingerisation: improving scaling with precision

The standard error between () = exp(—|£|) and its approximation using the
discrete Fourier transform (&) is

[ =9l S (5E) s yelLR
1 has regularity r
If [y =g <€ = Ne~(R-LD)yls e /"

Solving (1/€)1/" ~ log(1/e), one has N¢ ~ (R — L)|y|+/ " log(1/e),

log(1/€)
if 7~ fogog(1/e)

This required regularity for (&) gives

Nmaz = e = |1+ log(1/€) = O(log(1/e€))
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Schrodingerisation: improving scaling with precision




Summary of comparison of methods: for digital

guantum algorithms

d
Efu,(t) = A(t)u(t) te(0,7)
u(0) = wuy,
Method Queries to A Queries to uo
Spectral method [21] O(HH (%l)lmvaATpoly(log 2)) O(H“ (%)||mvaATpoly(log 2))
Truncated Dyson [14] O(H,li(%l)l”a T(log 1)?) (’)(||L(%|)|HQAT10g )
Time-marching [17] O( H'lilfa?%l)lll a4 T?log 1) O( “L"“(LO |)|||)
Improved LCHS N
time-dependent [34] O(HLL"E‘%l)l”aAT(log Ly1+1/8) (9(“|( |)|||)
Improved LCHS
time-independent [34] O(”“ (,}')lHaAT(log )1/B) O(“L( |)|”)
Schrodingerisation time-dependent, O(HH (%l)llloz T(log 1)?) (9(|Lt(" |)|||)
Schroédingerisation time-independent O(”|(°|)|“af Tlog 1) O(HL’E‘ |)|||)

ayg > |Al|, T is the evolution time, € is the error, and 8 € (0, 1) 88



Foundational implications?




Mathematical theory of dilation: Nagy’s theorem

A contraction V' is an operator on Hilbert space where ||V < 1
A dilation is an embedding of V into a larger structure U and V is a projection

of U onto a particular subspace

Theorem 1 Sz.-Nagy’s unitary dilation theorem [1]. Let V be
a contraction on a Hilbert space H, then there exists a Hilbert space
H, containing H and a unitary U on H,, such that

vk =p, U*, forallk=0,1,2,..

Moreover, when H, is chosen as the smallest reducing subspace for
U that contains H,

H, = V UH :=span{U"H,n € Z},
kez

(H,, U) can be identified as a minimal dilation. These conditions
determine U up to an isomorphism.

1. B. S. Nagy, C. Foias, H. Bercovici, and L. Kérchy, Harmonic analysis of
operators on Hilbert space (Springer Science & Business Media, 2010).

What are all the
possible classes of
dilations, that are
suitable for different
problems?
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Where is the quantum? Future interesting questions

Foundational question: which PDEs are classically efficiently simulable and
which ones are not?

Qubit systems (Gottesman-Knill): Only Clifford gates and projective measure-
ments in computational basis can be efficiently simulated by a classical computer
e.g. Toffoli gate is non-Clifford
Hard to see how non-Clifford gates are related to aspects of & & —
the PDE. Also difficult to see complementarity for non-

Y N (1 0 )
Clifford gates _ - 0 em/4
—[H] T e {The-{r e THEF—r

Continuous-variable systems (Bartlett-Sanders-Braunstein-Nemoto): Only Gaus-
sian states, gates and measurements can be efficiently simulated by a classical
computer

In Schrodingerisation, simple to see exactly which parts of
the PDE requires non-Gaussianity

A

(Gaussian gate: H up to quadratic in &, p



A new way to look at the boundary from quantum to

classical physics across space and time scales?

Time
A
Continuum Theory
1s4 (Navier-Stokes Eq)
Kinetic Theory
1028 (Boltzmann’s Eq)
10-10¢ A Molecular Dynamics
Newton’s Eq)
10-15 < | Quantum mechanics
(Schrodinger’s Eq)
o y v T -—

A Y = L Space

Schrodingerisation allows all of classical physics to be captured using quantum
mechanical equations (though not necessarily with known quantum advantage
for highly nonlinear ODEs/PDEs). So is there a new way of studying the inter-
face between the different physics on different scales using the ’same language’?



Summary




ngerisation formulation:

PDE becomes a Schrodinger-like equation in one
ension in a very simple way

Simulated on quantum device:
H(t) =At) 97+ A1(H) @1

: Any linear system of ODEs or PDE

du(t)
dt

A =(1/2)(A + AT = Al
A; = (i/2)(A — AT) = A]

— _A(H)u(t)

n — diag(—M/2,--- ,M/2 — 1)

We provide a simple recipe: Given any linear system of ODEs or PDE we find the corresponding
quantum system; and given any quantum system, can find corresponding linear ODE/PFE



D+1 gumode quantum evolution solves D-dimensional linear PDE!

Analogue (A)

Digital (D)

Quantum

(Q)

PDEs mapped to
continuous quantum
systems

Quantum cost linear in dimension
No discretisation necessary

Discretised PDE
mapped to
qubit dynamics

Quantum cost poly in dimension
and logarithmic in N

Classical

(C)

For PDESs, often need to
discretise spatially first
into a system of ODEs

For PDEs, can have
curse-of-dimensionality




Number of qumodes Max order term in H Number of terms

General linear PDEs

Homogeneous IV D+1 lax,,pr @7, b7 O(DK)
1%*-order time derivative

Inhomogeneous TV A Add 1 more qubit [ax,;, ﬁf] RI® a, bi®c O(DK)
n-th order time derivative IVB Addlog,(n) more qubits Similar terms to 1%-order ® o® '°&2 ™ O(DK)

Qua ntu m Examples

simulation cost Liouville VA ibLien Lol

is only linear in Heat VB (p,p}ed, Ve
dimension...and Fokker-Planck V B2 {$*,D} @, [, p) @ A, {p, u} @ 1,i[p*, D] @ I

if use qubits is
also
logarithmic in Wave VB4 D+1+one qubit {a,7’}®7®0, Ven®0, iap el
discretization

size!

Black-Scholes V B 3 (&*p* + p'E*) ® 0

axwell (D =3) VB5 4 qumodes + 4 qubits See Section VB 5

Uncertain linear PDE VI
Convection ile, p] ® 7, {e,pr®1

Nonlinear

Scalar hyperbolic VII A ilQ, C:] @1, {Q, é} ®1
Hamilton-Jacobi VII A [9:87)

N nonlinear ODEs VIIB i@, F] ®1, {QF}el




Cost for discretised scheme

This varies according to:

 Which qumodes one chooses to discretise (ancilla, main, or both?)
* Which numerical scheme one chooses

* Which Hamiltonian simulation protocol one chooses
H(t) = Ay (1) @9+ A (t) ® 1

Theorem 1—Given sparse access to the M? x M? matrix

H and the unitary U,,;;, that prepares the initial quantum

Example: state |u(0)) to precision e. With the Schrodingeriza-
tion approach, the state |u(z)) can be prepared with

query complexity  O(([[u(0)||/[u(®)[)st[|H||me) and
O(||w(0)||/||w(2)||dst|H||,4x) additional two-qubit gates.



Benefits of
Schrodingerisation

Many other methods based on
matrix inversion, or block-
encoding or LCU: Berry 2014,
Berry et al 2015, Costa et al 2019,
Linden et al, 2020, Childs et al
2021, An et al 2023 ...etc Can ask
me later for more references

Can take advantage of continuous-variable/analog quantum simulation: no
discretisation of PDE is needed

No discretisation in time needed: continuous time evolution, even in qubit version;
May not need to break up into many gates in the continuous formalism

Formalism easily adapted to fully digital setting (qubits and discrete time). Here
guantum cost can be polylog in discretization size and poly in dimension

Avoid complications of matrix inversion methods (e.g. condition number dependence) and other
methods (e.g. needing square roots of operators in block-encoding, using polynomial expansions)

Can see explicitly which parts of the PDE (including initial conditions) requires entangling
operations and which parts require non-Gaussian operations in the continuous-variable setting

Formalism is flexible and simple enough for not only continuous-variables and qubits,
but also hybrid discrete-continuous variable platforms

Can get ‘cost’ in D, instead of exponential in D




Problems become ‘simpler’ by lifting to a higher dimension!

Extra cost in quantum simulation of extra K dimensions costs
only O(K) and not exponential in K.

Might be classically more costly...but can potentially be more
efficient with quantum simulation!

1. Schrodingerisation: Linear non-Schrodinger’s equations become
Schrodinger-like equations

(e.g. dissipative equations become conservative equations)
JUST ADD ONE DIMENSION

2. . nonlinear problems become linear
DEPENDS ON PDE

3. Linear uncertain problems with L uncertain variables become
deterministic

JUST ADD L DIMENSIONS

4. Linear non-autonomous systems become linear autonomous
JUST ADD MAX TWO DIMENSIONS
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vvv Our philosophy: problems become

simpler by lifting to higher dimension

Classical computation: suffers from
curse of dimensionality

dimensional reduction
coarse graining

mean-field approximations
High-dimensional problems  moment closure Low-dimensional problems
Linear/certain/autonomous/ = - Nonlinear/uncertain/non-
simpler autonomous/other issues
— T Jift to a higher dimension  —— T —
(but not too high)

Quantum computation: can resolve
curse of dimensionality for PDEs 100



Reference list for Schrodingerisation (Part |):

Schrodingerisation basics and mathematical theory:

- Quantum simulation of partial differential equations via Schrodingerisation, Shi Jin, Nana Liu*, Yue Yu, arXiv:
2212.13969, Physical Review Letters, Vol 133, 230602, 2024

- Quantum simulation of partial differential equations : applications and detailed analysis, Shi Jin*, Nana Liu¥,
Yue Yu*, Physical Review A, Vol 108, 032603, 2023

- On the Schrodingerisation method for linear non-unitary dynamics with optimal dependence on matrix queries, Shi
Jin, Nana Liu and Chuwen Ma, Yue Yu*, arXiv: 2505.00370, 2025

- Dilation theorem via Schrodingerisation, with applications to the quantum simulation of differential equations,
Junpeng Hu*, Shi Jin, Nana Liu and Lei Zhang, arXiv: 2309.16262, Studies in Applied Mathematics, Vol 154, No.4,
2025



Reference list for Schrodingerisation (Part |):

Analog quantum simulation for PDEs:

- Analog quantum simulation of partial differential equations, ShilJin, Nana Liu*, arXiv: 2308.00646, Quantum
Science and Technology, Vol 9, 035047, 2024

- Analog quantum simulation of parabolic partial differential equations using Jaynes-Cummings-like models, Shi
Jin, Nana Liu?*, arXiv: 2407.01913, 2024
lll-posed PDEs and inhomogeneous terms:

- Schrédingerisation-based computationally stable algorithms for ill-posed problems in partial differential equations,
Shi Jin, Nana Liu and Chuwen Ma*, arXiv: 2403.19123, SIAM Journal on Scientific Computing (accepted 2025)

- On Schrodingerisation based quantum algorithms for linear dynamical systems with inhomogeneous terms, Shi Jin,
Nana Liu and Chuwen Ma*, arXiv: 2402.14696, 2024



Reference list for Schrodingerisation (Part |):

Boundary conditions:

- Quantum simulation for partial differential equations with physical boundary or interface conditions, Shi Jin*,
Xiantao Li*, Nana Liu*, Yue Yu*, Journal of Computational Physics, Vol 298, 112707, 2024

- Quantum Simulation for Quantum Dynamics with Artificial Boundary Conditions, ShiJin*, Xiantao Li*, Nana Liu*, Yue
Yu*, arXiv:2304.00667, SIAM Journal on Scientific Computing, Vol 46, Issue 4, B40-B421, 2024

- Quantum framework for simulating linear PDEs with Robin boundary conditions, Nikita Guseynov*, Xiajie Huang*,
Nana Liu*, arXiv: 2506.20478, 2025

lll-posed PDEs and inhomogeneous terms:

- Schrédingerisation-based computationally stable algorithms for ill-posed problems in partial differential equations,
Shi Jin, Nana Liu and Chuwen Ma*, arXiv: 2403.19123, SIAM Journal on Scientific Computing (accepted 2025)

- On Schrodingerisation based quantum algorithms for linear dynamical systems with inhomogeneous terms, Shi Jin,
Nana Liu and Chuwen Ma*, arXiv: 2402.14696, 2024



Overview of summer lectures on Schrodingerisation

PART II: Special topics

* Nonlinear ODEs and PDEs

* Uncertain ODEs/PDEs

 Non-autonomous mapped to autonomous PDEs

* Application to linear algebra, ground state and thermal state preparation
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Overview of summer lectures on Schrodingerisation

PART lll: Examples session (flexible)!

Any of the special topics in Part Il in more depth

* Going through some examples and explicit circuits

* Introducing UnitaryLab: software for quantum simulation for PDEs
e Extra topics (a) quantum thermal state preparation for optimization

(b) guantum algorithm for algebraic Riccati equation (application to
learning problem)
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Preparation for using UnitaryLab software:
To install today (available in French)!

https://randbatch.com:8443/unitarylab/index.html




Installing UnitaryLab software

/\ Activation required on first launch

LU =
 Copy your Device ID from the pop-up

 Email it to: hjp3268@sjtu.edu.cn with subject: pdeClient Activation
Request

e You’ll receive activation code within 24h

e Paste the code to unlock full features
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Installing UnitaryLab software

Installing the software directly:

https://sjtueducn-
my.sharepoint.com/:f:/g/person
al/hjp3268 sjtu_edu_cn/EuSUb)
PRN91DvISg680quLQBjwYO06S-
ee8adgxYY5BEoVw

108



Thank you and welcome to visit us in Shanghai Jiao Tong!

Shanghai Jiao Tong
University:
Open postdoc positions available!

Institute of Natural

Sciences ,
M Nana.Liu@qguantumlah.org

. . www.nanaliu.weebly.com
University of Y

Michigan-Shanghai
Jiao Tong Joint
Institute

Group website:
https://www.quantumqguintet.com/
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https://www.quantumquintet.com/
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Overview of summer lectures on Schrodingerisation

PART II: Special topics

e Nonlinear ODEs and PDEs

e Uncertain ODEs/PDEs
 Non-autonomous mapped to autonomous PDEs

* Application to linear algebra, ground state and thermal state preparation



II. Nonlinear ODEs and PDEs

“Turning nonlinear ODEs and PDEs into linear PDEs”

Based on:
“Quantum algorithms for nonlinear partial differential equations”, (arXiv: 2209.08478),
Bulletin de Sciences Mathematiques, Shi Jin, Nana Liu*

“Analog quantum simulation of partial differential equations”,
Quantum Science and Technology (arXiv: 2308.00646), Shi Jin, Nana Liu*



Nonlinear
systems

Applications in fluid dynamics (Navier-Stokes), gas
dynamics, molecular dynamics, financial markets,
machine learning...etc

Unpredictability: breakdown of perturbative theory (e.g.
Bruns: if perturbation theory converges in neighbourhood
of one point, at other points it must diverge), chaos...etc

Appearance of discontinuities and shock solutions and
singularities

Often statistical methods are employed: to understand
ensemble behaviour (e.g. statistical behaviour of fluids)




s it possible to have quantum
advantages in solving nonlinear
ODEs and PDEs?

* What do we mean by solve?

 What do we mean by advantage?

* How do we embed the nonlinearity?



Nonlinear ODEs and PDEs with multiple
M initial conditions

D ODEs (d + 1)-dim PDEs
%] ulkl k k _
dth (t) — F(X[k](t)), x k]l ¢ D raie F(u[k], Vu[ ], VQU[ ], ) =0
X[k](o)zxék], k=1,--- M ulkl € R4 k=1,...,.M

Nonlinear F' Nonlinear F




Classical versus quantum solutions

. . uantum solutions
Classical solutions Q

Typically...

X ZtX[k] (1)]¢)
u[k] (t — T7 L1y eees '/Ed) X Z(x,t) u[k] (.CIZ’, t)‘ﬂf, t>




Classical versus quantum solutions

. . uantum solutions
Classical solutions Q

Typically...
XEE=D 3, XD
u[k](t — T,.CUl,...,iUd) X Z(x,t) U[k](ﬂj,t)‘l‘,t>

Compare observables only




Classical versus quantum cost

Classical cost Quantum cost




Are nonlinear
problems
suitable for

gquantum
computation?

~

A computation is a physical
process

Quantum computation is a
guantum mechanical
process |

A quantum mechanical
process is fundamentally
linear

10



Two routes:

1) Make the
problem look linear

2) Don’t use
fundamental
guantum
mechanics

A computation is a physical

process

~

guantum mechanical
process

Quantum computation is a

\

A quantum mechanical

process is fundamentally

linear

11



Two routes:

1) Make the
problem look linear

2) Don’t use
fundamental
quantum

mechanics

Nonlinear quantum mechanics

X(t=0)

X(T))

T ~ log(1/n)

X'(t=0))

(X =0)[X'(t=0))[=1-n



~

A computation is a physical
process

1) Make the
problem look linear

A
Quantum computation is a ‘
guantum mechanical

process

2) Don’t use
fundamental
quantum
mechanics

A quantum mechanical
process is fundamentally
linear

13



Making nonlinear problem look linear

Exact

Approximations .
mapping

14



Making nonlinear problem look linear

Approximations

15



Making nonlinear problem look linear

Can map to
finite-dimensional system

M 4 M
Xl A -

& & o

F any nonlinearity?

Sometimes oco- s
Exact

dimensional space
mapping

16



Making nonlinear problem look linear

2D Burgers’ Equation
( + Exact solution Ca,n ma,p to
% @il * Use Cole-Hopf transformation o . .
A - - finite-dimensional system
W Sy g, —y e -2v—
] & capture
‘ + Transform the 2D Burgers’ equation into one a,’n,y nonline aritY?

single equation — 2D diffusion equation

oo (0°® o°®
— t—— | =l
Ox oy

Special cases of finite-dimensional projection:
Cole-Hopf transformation

Exact
mapping

17



asic roadmap:

Making nonlinear
problem look linear

Exact

Approximations mapping

18




Basic roadmap:

(d 4+ 1)-dimensional nonlinear PDE with M initial data

Hamilton-Jacobi and scalar hyperbolic PDEs General nonlinear PDEs

Approximations
Exact mapping: linear representation

Part A Finite nonlinear ODEs

Linear PDE with finite dimensions

and single initial condition Part B

Quantum algorithm: outputs ensemble-averaged
observables to precision e



Part A: Hamilton-Jacobi

and hyperbolic PDEs




(d + 1)-dimensional nonlinear PDE
with M initial conditions

General:

Oul”]

ot + F(u[k]yvu[k]avzu[k]y o ) — 07 t € R+Jx S Rdau[k] S Rda k = 17 7M

Here t > 0 is time, x is the spatial variable, while F' is a nonlinear function or
functional.

Hamilton-Jacobi: Hyperbolic:

F = H(Vul*, z) F=VH(u* z)



Some applications

Optimal control

Machine learning

Semiclassical limit of the Schrodinger equation - G -
Geometric optics :E:
INNNNN

Mean-field games
Front propagation
Sticky particles or pressureless gases

KPZ equations



Types of methods

Solution and method Advantages Disadvantages

Viscosity solution Weaker notion of solution Not valid when linear superposition
(direct numerical substitution) principle not obeyed ( e.g. high
frequency limit of wave equations)

Multivalued solution Simplicity: solving ODEs Numerical accuracy not easily
(Ray tracing) guaranteed
Multivalued solution N/A Not easy to derive for high-

(Moment methods) dimensional systems

Multivalued solution Globally valid solution Curse of dimensionality
(Level set methods)

23



(d + 1)-dimensional nonlinear PDE with M initial conditions

Hamilton-Jacobi PDEs

Level set formalism

A=2d+1 Scalar hyperbolic PDEs Part A
A=d+2

A-dimensional
linear PDE (Liouville)
with one initial condition

Quantum algorithm: outputs observables to precision €



The level set function qby"] (t,z,p) can be defined by

$M (t, z,p = ulFl(t, z)) = 0

Level set

mapping

[5]S. Osher and J. Sethian, 1988; S. Jin and S. Cz)ssher 2003



Level set

mapping

The level set function qby"] (t,z,p) can be defined by

$M (t, z,p = ulFl(t, z)) = 0

Then ¢kl = (gbgk], . qﬁgc]) solves the linear PDE

5t¢[k] +V,H - Vmcﬁ[k] —~ V. H - vp¢[k] = 0.

26



Want to compute the observable instead

Instead solve for v

M
Y(t,z,p) = Z [k]ta:p
k:

Level set
mapping

27



Want to compute the observable instead

Instead solve for v

M
Y(t,z,p) = Z (,b[k]ta:p

k:

Level set . . |
mapping Analytical solution to linear PDE problem

8y + Vo H - Vot — Vo H - Vi = 0

»(0,z,p) = ZH z)).

28



Want to compute the observable instead

Oyp + VpH - Vb — Vo H - Vpih = 0

Level set
mapping

D
—— =—iHY, H=i)Y ({;H(&1,....&p,p1,-,0D)p; — PiH(%1,...; 2D, 1, -, H)(;) = H'
=1

J=

29



Given any function G : R* - R

(G(t,z) = | GEY(tz,p)dp= Z )6(¢) (¢, , p))dp

Rd,

Y acts like the Wigner function

Physical for nonlinear HJE in WKB approx

observables (G(t,z)) are the moments

30



Given any function G : R* - R

Gt = | G)(tz,p)dp MZ (8 t, 2, p))dp

Rd,

Y acts like the Wigner function

Physical for nonlinear HJE in WKB approx

observables

Example:

h2 5 ()

iho; U = —?AKI! + V(z)¥, U(0,z) = Ag(z)e*

S satisfies HJ PDE with nonlinear H = (1/2)|VS|? + V(x)

31



Given any function G : R* - R

Gt = | G)(tz,p)dp MZ (8 t, 2, p))dp

Rd,

Y acts like the Wigner function

Physical for nonlinear HJE in WKB approx

observables

Example: W & Y

Byw + VpH - Vow — Vo H - Vyw = 0

w(0,,p) = |Ao(2)[*0(p — VSo())

32



Given any function G : R* - R

Rd,

Y acts like the Wigner function

Physical for nonlinear HJE in WKB approx

observables

Example: G() = 1,p,[pl?

1

p(t,x) = ]wdp, p(t, x)u(t, x) = fp'wdp, §p(t, r)u(t, ) =

(G(t,z) = | GEY(tz,p)dp= Z )6(¢) (¢, , p))dp

33



Given any function G : R* - R

(G(t,z) = | GEY(tz,p)dp= Z )6(¢) (¢, , p))dp

Rd,

Y acts like the Wigner function

Physical for nonlinear HJE in WKB approx

observables

Example: G() = 1,p,[pl?

p(t,x):]wdp, p(t, x)u(t, x) :/pwdp, %p(t, r)u(t, x) :f%wdp

First 3 moments give classical limits to
density, momentum and kinetic energy

0|2, hIm(¥V), (k% /2)|VE|?

34



Given any function G : R* - R

(G(t,z) = | GEY(tz,p)dp= Z )6(¢) (¢, , p))dp

Rd,

Y acts like the Wigner function
for nonlinear HJE in WKB approx

Physical
Compute inner products via inner product algorithm (e.g. swap-test
observables P P P g (e.g. swap-test)

Many other examples:

High-frequency limits of general hyperbolic systems
1) Geometric optics

2) Maxwell equations in isotropic medium

3) Elastic waves

4) Dirac equation

5) ..etc

35



Given any function G : R* - R

(Gtz) = | GO}t p)dp =~ Z (¢™)(t, z, p))dp

Rd,

M Tk o Rl o
Physical (G(t,z)) = f G(p)y(t,z,p)dp = MZ/ G(p)S(8% (¢, 2, p))dp = M;; G(us(t. x))

observables : k
Jacobian J'y = | det(aqs[ ]/ap) |p=u[k] (t,x)

Level-set encoding is important: Amplitude-
encoded solution in u requires the extra
computation of the Jacobian, but level-set
solution takes this into account automatically!

36



D dimensional nonlinear scalar hyperbolic PDE with M initial conditions

gulkl & Oulk]
ot _ZFJ( k]) a +Q($1:" :mD:u[k]) :0: ’US[k](O,SE) _u([)k]( )! k:]'JJM

Jj=1

Level set

We introduce a level set function ¢(¢,z1,...,Zzp,x), where x € R

mapping

gb[k](t,m,...,:vp,x)zo at X:U[k](t,ml,...,mp)

1 M
‘ qj(tamla"':mD:X) - Mzd(é[k](t:mla"':mD:X))
k=
D + 1 dimensional 1

linear PDE —) \I’["‘c sy

6X

X))kl =

X =(x1,..,2D,X), aj = Fj(x) for j =1,..., D

M
1
V0,21, 20, %) = 77 Y 6(x — g (@1, -, zp))

ap+1 = _Q(mla ...,IL'D,X) k—1



Level set

mapping

T(t) = [dXT(t, X)|X)

i ~ 5 ;
j=1 J=1
dv R n +
E:—zﬂ’v, H:A2®W+A1®I:H

A =Y75F(0) — 3 270,{C.Q)
A2 — % Z?:l[Qa CA]

Quick observations for () = 0:

1. Direct simulation without Schrodingerisation is already sufficient
2. Linear hyperbolic PDEs require only Gaussian operations
3. Nonlinear hyperbolic PDEs require non-Gaussian operations

38



Part B: General
nonlinear PDEs




(d + 1)-dimensional nonlinear PDE with M initial conditions

General nonlinear PDEs

Part B Vortex method Discretisation
D=d*/e D = (d/e)"
A-dimensional A=D+1

System of D nonlinear ODEs

linear PDE with M initial conditions

with one initial condition

Quantum algorithm: outputs observables to precision €



System of /N nonlinear ODEs

dyn (t)
dt

N-1
B oo [0 ), acR
n=0

N + 1 dimensional lznear PDE

Nonlinear = —F,(v0,..,YN-1,1), n=0,..,N—1

mapping

0P(t PP
( QU = 1 Z aq q0:- :QN—l)q)(tJQO:"'JQN—l)) =0

®(t) = [®(t g0, -, qN—1)|0s --» AN—1)dG0-..dgN 1

N-—-1
7) = —?,A‘:b(t), A= Z QRFR(QU: "':(.?N—l)
n=>0

dv
—d’;} = —1Hwv, H—_A2®ﬁ-|—A1®I—_HT
If Fis nonlinear (i.e. nonlinear ODE)

=1 Z {Qn, F,} then we must go beyond Gaussian operations
[@m Qn] =1
N-1
A2 — % Zn:O [Qna Fn] _ 41



System of D nonlinear ODEs

aXx¥ (1) Observable
dt

= F(Xx"(), XM eRrP,

Exact mapping: Linear representation:
(d + 1)-dimensional linear PDE

a(péi 4) + Vg [F(q)®(t,q)] =0 |

k]
(0,9) = 25 — X0 Solution

®(t,q) =

> AGKH(o)

Za

Compute

L0

42



Equation Number of qumodes Max order term in H Number of terms in H

General linear PDEs

Homogeneous IV D+1 lax,,pr @7, b7 O(DK)
1%*-order time derivative

Inhomogeneous TV A Add 1 more qubit [ax,;, ﬁj{] RI® a, bi®c O(DK)
n-th order time derivative IVB Addlog,(n) more qubits Similar terms to 1%-order ® o® '°&2 ™ O(DK)

Examples

Liouville V A i[p, L] ® 1, {p, L}l

Heat VB 1 {pD,p} @4, V&p
Fokker-Planck V B 2 {#°,D} @, ilw, Bl ® 0, {B, u} ® 1 i[p*, D] ® I
Black-Scholes V B 3 (&5 + "% @ 1

Wave VB4 D + 1+ one qubit {a,p’}®@71®0, Ven®e iapleloe
Maxwell (D =3) VB5 4 qumodes + 4 qubits See Section VB 5

Uncertain linear PDE VI
Convection ile,p|l @17, {e,pr®1

Nonlinear

Scalar hyperbolic VII A i@, C:] @1, {Q, é} ®1
Hamilton-Jacobi VII A [9:87)

N nonlinear ODEs VIIB i@, F] ®1, {QF}el

arXiv: 2308.00646




Reference list for Part Il: Nonlinear PDEs

Nonlinear PDEs:
- Analog quantum simulation of partial differential equations, Shi Jin, Nana Liu*, arXiv: 2308.00646, Quantum Science
and Technology, Vol 9, 035047, 2024>> for nonlinear PDE and ODE algorithms based on the techniques introduced in

the following papers (written prior to Schrodingerisation):

- Quantum algorithms for computing observables of nonlinear partial differential equations, Shi Jin, Nana Liu*, arXiv:
2022.07834, Bulletin des Sciences Mathematiques, Vol 194, 103457, 2024

- Time complexity analysis of quantum algorithms via linear representations for nonlinear ordinary and partial
differential equations, Shi Jin, Nana Liu, Yue Yu*, Journal of Computational Physics, Vol 487, 112149, 2023
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Problems become ‘simpler’ by lifting to a higher dimension!

Extra cost in quantum simulation of extra K dimensions costs
only O(K) and not exponential in K.

Might be classically more costly...but can potentially be more
efficient with quantum simulation!

1. Schrodingerisation: Linear non-Schrodinger’s equations become
Schrodinger-like equations

(e.g. dissipative equations become conservative equations)
JUST ADD ONE DIMENSION

2. . nonlinear problems become linear
DEPENDS ON PDE

3. Linear uncertain problems with L uncertain variables become
deterministic

JUST ADD L DIMENSIONS

4. Linear non-autonomous systems become linear autonomous
JUST ADD MAX TWO DIMENSIONS

45



vvv Our philosophy: problems become

simpler by lifting to higher dimension

Classical computation: suffers from
curse of dimensionality

dimensional reduction
coarse graining

mean-field approximations
High-dimensional problems  moment closure Low-dimensional problems
Linear/certain/autonomous/ = - Nonlinear/uncertain/non-
simpler autonomous/other issues
— T Jift to a higher dimension  —— T —
(but not too high)

Quantum computation: can resolve
curse of dimensionality for PDEs b



Reference list for Part II: Nonlinear ODEs/PDEs

Nonlinear PDEs:

- See << Analog quantum simulation of partial differential equations, Shi Jin, Nana Liu*, arXiv: 2308.00646, Quantum
Science and Technology, Vol 9, 035047, 2024>> for nonlinear PDE and ODE algorithms based on the techniques
introduced in the following papers (written prior to Schrodingerisation):

- Quantum algorithms for computing observables of nonlinear partial differential equations, Shi Jin, Nana Liu*, arXiv:
2022.07834, Bulletin des Sciences Mathematiques, Vol 194, 103457, 2024

- Time complexity analysis of quantum algorithms via linear representations for nonlinear ordinary and partial
differential equations, Shi Jin, Nana Liu, Yue Yu*, Journal of Computational Physics, Vol 487, 112149, 2023



Overview of summer lectures on Schrodingerisation

PART II: Special topics

* Nonlinear ODEs and PDEs

e Uncertain ODEs/PDEs

 Non-autonomous mapped to autonomous PDEs

* Application to linear algebra, ground state and thermal state preparation
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Appendix Slides




ngerisation formulation:

PDE becomes a Schrodinger-like equation in one
ension in a very simple way

Simulated on quantum device:
H(t) =At) 97+ A1(H) @1

: Any linear system of ODEs or PDE

du(t)
dt

A =(1/2)(A + AT = Al
A; = (i/2)(A — AT) = A]

— _A(H)u(t)

n — diag(—M/2,--- ,M/2 — 1)

We provide a simple recipe: Given any linear system of ODEs or PDE we find the corresponding
quantum system; and given any quantum system, can find corresponding linear ODE/PFE



Block-encoding method



Given any function G : R* - R

Gt = | G)(tz,p)dp MZ )8(8¥ (t, 2, p))dp

Rd,

Discretising 1 and the delta function
Computing

physical -
observable Vo0 = MZH5 (lih —u; " (n =0, hg)).

k=11i=1

0 —1 [ Yo,
— M 3
[omse) =2 (%)
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Given any function G : R* - R

Gt = | G)(tz,p)dp MZ )8(8¥ (t, 2, p))dp

Rd,

Computing Estimate with a quantum algorithm:
physical
observable

(G(t, 1)) ~

N
y 1
(Grg) = 7 Y G
l

53



Computing

physical
observable

Estimate with a quantum algorithm:

(Gw = Z len,_j Il

Main players:

1%0) = AL
1 N
Gn.j) = N—ZGz” 7))
l
— ’Gn,j>< n,j|

M sparse oracle access

=0)
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Computing

physical
observable

Estimate with a quantum algorithm:

N
w 1 1
(G ‘)E—ZGI"‘D”J’: NdNﬁ’)oNGlV |_n¢onG|V T,

= (tho|(M™H)TGM ™ eho)

!

To design quantum algorithm for this...
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Computing

physical
observable

To design quantum algorithm for this...

Input (Step 0)

Input (Step 0)

Input (Step 0)

T

Block access to M
Step 1

Step 2

Sparse access to M

Block access to M1

Step 3

-,

Unitary L(n, j) Block access to G

Step 4

Block access to G’

Unitary Usinitial

(Yol (M™HTGM ™ gho)

Step 5

Amplitude
estimation of T
to error €
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Theorem: Computing observables of

nonlinear Hamilton-Jacobi PDEs

A quantum algorithm that takes sparse access (s = O(d),||M||maz = O(1),0nr,0F) to M, where
M| = O(1), and access to the unitaries L(t,,j/N), where L(t,,3/N)|0) = |Gn ;) and Uinitial, where Uinitiai|0) =
110), is able to estimate the ensemble average (G(T,x)) at time T = t,, with M initial data, to precision € with an
upper bound on the query complexity Q

and the same order of additional 2-qubit gates, where we suppress all O(1) terms except T = O(1) and ny, > O(1).

Compare to C = O (]\4Tal2 (g)dﬂ)
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Theorem: Computing observables of

scalar hyperbolic PDEs

A quantum algorithm that takes sparse access (s = O(d), || M| mez = O(1),0ur,OF) to M with
M| = O(1) and access to the unitaries l(t,,3/N) where l(tn,3/N)|0) = |gn.j), and Uinitiar where Uinitiai|0) = [10),
is able to estimate the ensemble average (g(T,3/N)) at time T, with M initial data, to precision € with an upper

bound on the query complexity Q
(n;/)o)zd"T‘Q’ (nipo)zd‘sz
Q=0 ( (10 log €7

and the same order of additional 2-qubit gates, where we suppress all O(1) terms except T = O(1) and ny, > O(1).

€

Compare to C = O (MTol3 (@)dﬂ)
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Level-set encoded solution can give observables

that amplitude-encoded solutions cannot

Level-set encoding:  — >,k Yokl [5)]k)

Amplitude encoding: — >, - u, jn)|k)



Level-set encoded solution can give observables

that amplitude-encoded solutions cannot

Level-set encoding:  — >,k Yokl [5)]k)

Amplitude encoding: — >, - u, jn)|k)
Gta) = | Gyl p)dp= 5 i G()O(@M(t,,p))dp = - L~ § Gur )
Rd Mk ‘ Mk — w

Amplitude-encoded solution requires the extra  s,copian 7 = | det(89* /0p)|
computation of the Jacobian
but level-set solution takes this into account automatically!

pzu'[}'k] (t 7:1:)
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Theorem: Computing observables of

nonlinear ODEs

The worst-case total query complexity Q to estimate the observable (A(t,)) to precision € on a quantum
algorithm that takes sparse access (s = O(D), || M||maz = O(1),0n,O0F) to Mopg, access to the unitaries J(n) where
J(n)|0) = |A™) and Ug, where Us,|0) = |®y), is

2 73 2 a2
n% D'T® (2 DT
QZO( 0610 log( 067

where all constant terms O(1) are suppressed except T = O(1) and ne, = O(1). This complexity is independent of
M.

Compare to C (Mlng)
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TABLE 1. Quantum (Q) and classical (C) cost comparison in computing observables at time 7" and A = O(N?) spatial points
to precision €

Nonlinear equations b range Quantum
(M initial data) (initial data- advantage
dependent) (possible)

(d + 1)-dimensional (1—a)d—-4—-b (1—-3a)d—9—-3bbe|0, w -3) M,d, e
Hamilton-Jacobi PDE

d + 1)-dimensional l—a)d—5—-b (1—-3a)d—9—-3bbe 0’(1—33)4_3 M,d, e
3
hyperbolic PDE

System of D ODEs -5

(d + 1)-dimensional general PDE —7—ad
(Lagrangian discretisation)

(d + 1)-dimensional general PDE =~ —(4+ a)d —9—(4+a)d
(Eulerian discretisation)




Advantage with respect to number of initial conditions

1. Using the linear representation method: will get quantum advantage with respect to
number of initial conditions. Classical algorithm is linear in this number and quantum algorithm
isindependent of this number!

2. Applications:

Running numerical simulations with many differential initial data: e.g. Monte-Carlo,
Stochastic collocation, Rayleigh-Taylor instability

Uncertainty quantification
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Overview of summer lectures on Schrodingerisation

PART II: Special topics
* Nonlinear ODEs and PDEs
 Non-autonomous mapped to autonomous PDEs

* Application to linear algebra, ground state and thermal state
preparation



II. Uncertain ODEs and PDEs

“Turning uncertain PDEs into certain PDEs”

Based on:
“Analog quantum simulation of partial differential equations”,

Quantum Science and Technology (arXiv: 2308.00646), Shi Jin, Nana Liu*

“Quantum algorithms for uncertainty quantification: applications to partial differential
Equations” (arXiv: 2209.1120), Francoise Golse, Shi Jin, Nana Liu*

“Quantum algorithms for stochastic differential equations: a Schrodingerisation
approach”, ShiJin, Nana Liu, Wei Wei*, arXiv:2412.14868, 2024, Journal of Scientific

Computing, Vol 104, no. 56, 2025



Uncertain PDE: Method 1

- have knowledge of the distribution where stochastic variables are
sampled




Uncertainty quantification

* One of the most active areas in scientific computing, applied
mathematics and data science

* Our PDE problem: coefficients are modelled stochastically
* Many samples M needed to get an ensemble average

* Classically can be intractable if M is high and the number of
stochastic variables can also be high

* |s there a way of directly capturing ensemble-averaged quantities
without solving PDE multiple M times?



Quantum stochastic galerkin method

* Would like a method that does not require the cost of implementation to scale exponentially with the
number of stochastic variables L: preferably only linearly.

* |fin addition we have knowledge of the actual underlying distribution itself, we want to the method
to be independent of the number of samples M of the underlying distribution

 Want a method that is ‘natural’ for implementation on physical systems

Example: convection equation with stochastic coefficients

Ry ey R[N W(Zh ceny ZL)

Can always make expansion  wu(t, z1,...,20,%1,...,%p) = »  Un(t, 1, ,2D)Pn(
neNy

arXiv: 2308.00646



Quantum stochastic galerkin method

Here the weights obey the normalisation condition:

/Pn(zl, ceny ZL)Pm(Zlg ceny ZL)W(Zl, ceny zL)dzl...dzL = 6nm

|
I~

{In) }nent as the Fock or number basis, so Zneﬁ%, In)(n|

Natural basis for physical systems like photonics!

(z1.. zL|n L L z;|ng L H, (z) exp —zf)
Pp(z) = W1/2(z, H H =11 w(z) =
. e e

H,, (z) are the one-dimensional Hermite polynomials



Quantum stochastic galerkin method

2

u Oou = exp
e _z (zla' 3 RLy L1y ::ED)_ =0: Z1y w5 AL NW(zla" ZL) _HTU(ZI)_H ( ) Cj €ER

Z1yeeey zL(u) = Z u?},(tamla"':mD)



Quantum stochastic galerkin method

U(t,Z1y .y ZL, X1,y XD) = Z U, (t,X1,...,%p) Pp(21,...,21)
neNL

0 0
:P & t y X1y« - ‘I_Z Z: A}nm (xla ) x] (t:xl:---:xD) =0,

j=1 meNEk

Ajpm (x1,...,%p) = /q(zl,...,zL,xl,...,xp)w(zl) .. W(zL) Py (21,..,2L) P (21,...,21)dzy, .. .,dzL

where the coefficients of the PDE are now completely independent of z!

Rewrite coefficients: Aj,,m:/c}-(zl,...,zL,xl,...,xD) (m|zy,...,21){z1,...,z|n)dz,...,dzL

= (m| /cj (%1,..,%D,21,...,21) |21, .., 20) (21, . ..,2z1|n)dz;. . .dzp = (m]cj (x1,...,%D,21,...,2L) |n)



Quantum stochastic galerkin method

Instead of solving the original z-dependent PDE multiple times for every sample

of z1,--+, 2z, we can now solve a z-independent equation
Define: u(t) = / > " tn (t,x1,...,%p) [m)|x1, ..., xp)dx
ncZt

D

du -~ - -~ -~ -~

:} E — —]14];!!:r A — ch (le s ZL 4 X1, ,XD)p},
7=1
H(O) - Z Un (O:xh . :xD) |ﬂ> |x1:r :xD>dxl dxp

10



ngerisation formulation:

PDE becomes a Schrodinger-like equation in one
ension in a very simple way

Simulated on quantum device:
H(t) =At) 97+ A1(H) @1

: Any linear system of ODEs or PDE

du(t)
dt

A =(1/2)(A + AT = Al
A; = (i/2)(A — AT) = A]

— _A(H)u(t)

n — diag(—M/2,--- ,M/2 — 1)

We provide a simple recipe: Given any linear system of ODEs or PDE we find the corresponding
quantum system; and given any quantum system, can find corresponding linear ODE/PFE



Quantum stochastic galerkin method

D

du . ~ ~ ~ -~ ~

& = —iAu, A= E ¢i(z1,-..,21,%1,-..,XD) Pj,
j=1

u(0) = / > un(0,%1,...,xp) ) |x1,...,xp)dx;.. .dxp

neN;
We can easily Schrodingerise this equation

v A _ _
3= H,  H=407+A40L  7(0)=[E)u(0),

1 D

A = 52{9—(21,...,2L,5cl,...,5cp),ﬁj},

j=1
. D
1 A A A ~ A
A, = EZ ci(21,-..,21,%1,..,%D) , D;] -
j=1

Note that when ¢; does not depend on &;, then [¢;, p] = 0 = A,, thus A = AT and we can directly use

Hamiltonian simulation and no Schrodingerisation is needed. -



A2:

Quantum stochastic galerkin method

i

b |

D
Z [Cj(ila .. ')‘%L)%l!"')'%D)Jﬁj:l .
ji=1

Information about the underlying distribution only enters through the initial
condition:

u(0) = -/]M(O,zl,...,zL,xl,...,xp)wl/2 (zl)...wl/2 (z1) |z1,.--,2L)|%1,. .., xp)dz;. . .dzrdx;. . .dxp,
7

e 1

T

w(z1) =

Another interesting observation is that here it is the probability amplitude of the distribution of z, i.e.
w'/2(z)) rather than w(z), that is embedded in the amplitude of the pure quantum state |#(0)), which is a
uniquely quantum way of embedding the probability distribution 13



New method naturally suited to particle number measurements!

Sufficient for these measurements to recover statistics

‘1’1) (Il‘ Solve instead for u,
u(t) = /d:c S tn(t, 1, D) R |1, D) to — E. (u)

nezy
projective measurements 2
> u2 = Var. (u)

Given the output u(¢), if one can measure in the number basis |n) (n|, one is able to retrieve a state
X [ tn(t,x1,...,%p)|x1,...,xp)dx;...dxp, whose amplitudes correspond to already ensemble-averaged
physically important quantities. The choice of n = 0 for example can give the state whose amplitudes
approximate E,  , (u).

Typically, for smooth, say C*°, functions u, the coefficients in the above expansion in n; decays
exponentially in 7, so only small n; values need to be kept in the expansion, which can be used to retrieve
accurately physically meaningful quantities. Suppose we keep terms in the expansion to n; = n,,, for each of
the L modes. Then it is known that the error in approximating u# with an expansion in u,, scales like
~ 1/np ., where m is the regularity of u, i.e. all derivatives up to 0™ u/0z]" exist and are bounded, but no
higher derivatives exist. Thus, to capture most of the ensemble information about u, we only need to

meausure #; up to iy, which can be small, typicallll be enough, for smooth functions w.

14



Equation Number of qumodes Max order term in H Number of terms in H

General linear PDEs

Homogeneous IV D+1 lax,,pr @7, b7 O(DK)
1%*-order time derivative

Inhomogeneous TV A Add 1 more qubit [ax,;, ﬁj{] RI® a, bi®c O(DK)

n-th order time derivative IVB Addlog,(n) more qubits Similar terms to 1%-order ® o® '°&2 ™ O(DK)

Examples

Liouville V A i[p, L] ® 1, {p, L}l

Heat VB 1 {pD,p} @4, V&p
Fokker-Planck V B 2 {#°,D} @, ilw, Bl ® 0, {B, u} ® 1 i[p*, D] ® I
Black-Scholes V B 3 (&5 + "% @ 1

Wave VB4 D + 1+ one qubit {a,p’}®@71®0, Ven®e iapleloe
Maxwell (D =3) VB5 4 qumodes + 4 qubits See Section VB 5

Uncertain linear PDE VI . .
Convection ile,p|l @17, {e,pr®1 L StOChaStIC V&I‘l&bleS

Nonlinear

Scalar hyperbolic VII A i@, C:] @1, {Q, é} ®1
Hamilton-Jacobi VII A [9:87)

N nonlinear ODEs VIIB i@, F] ®1, {QF}el




Uncertain PDE: Method 2

- do not know the distribution from which the stochastic
variables are sampled




New method 2: related to warped phase transformation

Warm-up example:
heat equation with

uncertain diffusion u(0,z, 2) = uo(z, 2)
Assume: a(z,z) = Zai(Z)bi(m) (1)

where z € R? is the space variable, and z is the (possibly high-dimensional) random or deterministic parameters that

model uncertainties. Without loss of generality, we assume a;(z) > 0 for all ¢ (since otherwise one can absorb the
negative sign into b;(x)), and

> aiz)<C (2)

=1

for some C' independent of L. This already covers a fairly general class of inhomogeneous and uncertain coefficients.

arXiv: 2209.1120



Uncertain heat equation

Let p = (p1,--- ,pr)?, with p; € (—oo,0) for all 4 = 1,..., L. We introduce the transformation

L
1
Ut,z,z,p) = 5 Hai(z)e_“"(z”pilu(t,m,z),
i=1

from which one can recover u from U via
u(t,z,z) = / Ut,z,z,p)dp = 2/ U(t,z,z,p)dp.
(_DO:!OO)L (O»OO)L

A simple computation shows that U solves

L
U + Y sign(p)bi(x)Ad, U =0, Stochastic term disappears!
=1

. : . . , 18
in which the coefficients of the equation are independent of z!



Uncertain heat equation

To work with M samples {z,,}, m = 1,..., M, we now define
| M
V(t,xz,p) = 7 mZ::l U(t,z, zm,p)

for p; € (—o00,00),1=1,---, L, which solves

8V + i, sign(p;)bi(x)Ad,, V =0

V(0,2,p) = 37 Somen [liny @i(zm)e s CmIPlu(0, 2, 2) .
This is the linear PDE we will solve, which has certain coeflicients and a single initial condition. Now the average of
the solutions of the original problem, Eq. (5), can be recovered from V (¢, z,p) using

M

u(t,z) = % Z u(t, z, zm) = ]V(t,:b‘,p) dp .

m=1

Thus, in solving for V', the computational cost is clearly independent of M!
19



TABLE I. Quantum (Q) and classical (C) cost comparison for r*®_order approximations in computing ensemble averaged
solutions, at A final meshpoints, over M samples, when n2A = O(N b), where ng is a normalisation of the initial state. Quantum
advantages are possible when ; > 0 for the corresponding parameters. We also give the sufficient range of b where quantum
advantage is possible. In the table Mpyeo: = O(L*HEHLE3/e(q/e)EAN/3) " Mpo,, = O(LP4TEAY/e max(L, d)(d/e)*/¢/d),
Mgy = O(L{d—l—ZL-I—S)/c-l—Z (d/E)(2L+2)/C) and Msehr = O((d 4 L)(d+2L+2)/c+2/(d(d+2)/c+262L/r)).

o (%) =0 (M’Yld“fZL’*S (d+ L)™ (%)75)

(d + 1)-dim PDE Y Y3 Y4 s Parameters
(M initial data) with advantage
(possible)

Linear heat
M<Mh,eat = - g—7-bh [O,d—7—?"]

M > Mpeqt dtL-6-b d+L-6=b dtL—6-b _ 1 [0,d+ L — 6 — 2r]

r

Linear Boltzmann

M < MBout- — d=2-b _1 [0,d — 2 — 2r]
M > Mpoutz, L > d dil=2-b [0,d+ L —2—2r]
M > Mpoiz, L < d = == gth-2-b6 _q [0,d+ L —2—2r]

r

Linear advection
M < Maay = 4-8-b _ [0,d — 8 — 2r]
M > Maay 0 d+2L-6-b _ 1 [0,d+ 2L — 6 — 2]

r

Schrodinger
M < Mschr —4 — | 0,d—4—7]

™

M > Mschr 0 dt2l-d-b de2b=4=b 1 [0,d + 2L — 4 — 2r]

T




TABLE II. Here Q,,iy and Q are the respective quantum costs for r*"_order methods in computing ensemble averaged observ-
ables, over M samples, based on solving the original equation (Qorig) versus the phase space representation (Q). Here s and
k are the sparsity and condition numbers corresponding to M of the original (d + 1)-dimensional PDE and the phase space

PDE. However, there are more oracle assumptions needed for Q,ri; and when these assumptions are not obeyed, the phase
space method is always preferable.

PDE Q < Qom’g

Linear heat (d/e)Q/?" M > @(L4+9/rd3(d/e)3/r)
Phase space linear heat Ld(Ld/e)*'"

Linear Boltzmann d(d/e)*'™ M > O(L*CTD/m(d/€)%/™ [ (de))
Phase space linear Boltzmann (d+ L)(Ld/e)*'™

Linear advection d(d/e)*'" M > O(L***/md*(d/e)®/)
Phase space linear advection Ld(Ld /6)3/ T

Schrodinger (d/e)?/™ M >O(d+ L)3(1+ L/d)* /" ((L + d)/e)*'")
Phase space Schrodinger (d+ L)((d+ L)/e)*'"




Problems become ‘simpler’ by lifting to a higher dimension!

Extra cost in quantum simulation of extra K dimensions costs
only O(K) and not exponential in K.

Might be classically more costly...but can potentially be more
efficient with quantum simulation!

1. Schrodingerisation: Linear non-Schrodinger’s equations become
Schrodinger-like equations

(e.g. dissipative equations become conservative equations)
JUST ADD ONE DIMENSION

2. . nonlinear problems become linear
DEPENDS ON PDE

3. Linear uncertain problems with L uncertain variables become
deterministic

JUST ADD L DIMENSIONS

4. Linear non-autonomous systems become linear autonomous
JUST ADD MAX TWO DIMENSIONS

22



vvv Our philosophy: problems become

simpler by lifting to higher dimension

Classical computation: suffers from
curse of dimensionality

dimensional reduction
coarse graining

mean-field approximations
High-dimensional problems  moment closure Low-dimensional problems
Linear/certain/autonomous/ = - Nonlinear/uncertain/non-
simpler autonomous/other issues
— T Jift to a higher dimension  —— T —
(but not too high)

Quantum computation: can resolve
curse of dimensionality for PDEs ”



Reference list for Part Il: Uncertain PDEs

Uncertain PDEs:

- Section 6 in << Analog quantum simulation of partial differential equations, Shi Jin, Nana Liu*, arXiv: 2308.00646,
Quantum Science and Technology, Vol 9, 035047, 2024>>

- Quantum algorithms for uncertainty quantification: application to partial differential equations, Francoise Golse, Shi
Jin, Nana Liu*, arXiv: 2022.112200, SCIENCE CHINA Physics, Mechanics & Astronomy (SCPMA) (accepted 2025)



Overview of summer lectures on Schrodingerisation

PART II: Special topics

* Nonlinear ODEs and PDEs

e Uncertain ODEs/PDEs

 Non-autonomous mapped to autonomous PDEs

* Application to linear algebra, ground state and thermal state
preparation

25
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Overview of summer lectures on Schrodingerisation

PART II: Special topics
* Nonlinear ODEs and PDEs

e Uncertain ODEs/PDEs

* Non-autonomous mapped to autonomous PDEs

* Application to linear algebra, ground state and thermal state
preparation



Il. Non-autonomous PDEs
“Turning linear non-autonomous PDEs into linear autonomous PDEs”

Based on:
“Quantum simulation for time-dependent Hamiltonian — with applications to non-autonomous

ordinary and partial differential equations,” Journal of Physics A (arXiv: 2312.02817),
Yu Cao, Shi Jin, Nana Liu*

+ using above scheme to unify different quantum simulation schemes for non-autonomous PDEs
“A unifying framework for quantum simulation algorithms for time-dependent Hamiltonian
dynamics,” arXiv:2411.03180, Yu Cao, Shi Jin, Nana Liu* 3



gerisation formulation:

PDE becomes a Schrodinger-like equation in one
ension in a very simple way

Simulated on quantum device:
H(t) =At) 97+ A1(H) @1

. Any linear system of ODEs or PDE

du(t)
dt

A =(1/2)(A + AT = Al
A; = (i/2)(A — AT) = A]

— _A(H)u(t)

n — diag(—M/2,--- ,M/2 —1)

We provide a simple recipe: Given any linear system of ODEs or PDE we find the corresponding
quantum system; and given any quantum system, can find corresponding linear ODE/PFE



Ordinary and partial differential equations across multiple scales

Time

Continuum Theory

2ol (Navier-Stokes Eq)

Kinetic Theory Time-dependent Hamiltonian
10765 - (Boltzmann’s Eq) Schrodinger’s equation
Molecular Dynamics d|u(t))

10195 - :
(Newton’s Eq) ?

107285 4 O s By [u(®)) = U (#)|u(0))

1A 1nm 1um 1m 5



General applications of time-dependent Hamiltonian simulation

Adiabatic Quantum Quantum control

Photo from J. Necaise Photo from Chem. Soc. Rev., 2022,51, 1685-1701

Interaction picture Solving PDEs: Schrodingerisation

pr(t) = —ia[H. 1(t), pr(t)] [Jin, Liu, Yu, PRL, 2024]



Time-independent Hamiltonian simulation is well-studied

U(t) = e !

Digital quantum simulation: evolution in Programmable guantum simulator
d |SC |"Ete t|me Example: Trotter decomposition

Operations

* Many different well-studied
algorithms available

l

Number of steps ~ t2 /e Fault-tolerant digital
quantum simulator

Analogue quantum simulation: evolution |
in continuous time e~ "Ht14,(0)) without breaking up into many gates

7



How to simulate evolution due to a time-dependent Hamiltonian?

The solution can be written as: y () =U 0y,

U, =Te [H(T)AT _ lim e—iHIW)AL o—iH(n)At
’ N—oco

:1—|—i(—i)”$/rdr1---/rdrnTH(rl)---H(rn)

T is the chronological time-ordering operator

[H(1) ,_H(t’ )] = 0, then no time-ordering is required



Time-dependent Hamiltonian simulation less well-studied

U(t) = Te o H(T)dr HO) =Y H(t),  Hel(t) = O
k

Digital quantum simulation: evolution in Approximate T(e—ifoTH(s) ds) via many small e~ioh«
discrete time ' ' '
Complicated to do time-ordering...

Analogue quantum simulation: evolution Quantum control methods
in continuous time to tune parameters fi(t) in time

9



Changing non-autonomous Schrodinger’s equation to autonomous

Schrodinger’s equation

Theorem 2. For the non-autonomous system ? = —iH (t)y (t) we introduce the following
initial-value problem of an autonomous PDE
ow Ow
= —iH
o T Bs (s)w (6)
w(0,s) = G (s)y,, s € R.
The analytical solution to this problem is
W (t,S) — G(S o t) Zf{sag_d’o, Z/{S’_g_r — e—iLS_IH(T)dT — Te—if(;H(S—H-T)dT. (7)
When G(s) = 4(s), one can easily recover y(t) in equation (2) from w(t,s) using
y(2) = / w(t,s) ds. (8)

Alternatively, when G(s) = 1, y(t) can be recovered with w(t,s = t) = y(t). 0



Changing non-autonomous Schrodinger’s equation to autonomous

Schrodinger’s equation

Proof of theorem 2. We will now prove that w(t,s) = G(o)U; .y, solves equation (6) using
o = s —t. The LHS of equation (6) can be written as

%_;: N % _ (8(;(;27) n 8%£C’)) Us o¥o + G () (82;;’0 + 82;;’0))’0
= G(0) (Us,o 81:;{;,0 + 82(;[;’02/{0,0 +Us o 8%{%))’0
= G(0) 82;;’02/!0,03’0 + G (o) Usyo (‘5’%‘;’“ H 82:9{{;’0)” 0
= —iH (s)w + G (o) Uy, (821;2’0 + Blgz,g ) Yo
= —iH (s)w.

Here in the first line the first term in brackets is zero, since letting o =s —1¢, clearly
0G(0)/0s = —0G(c)/0t. In the second term we used the expansion U , = U ol . In the
third line we used the definition for i, which obeys equation (4) and G(o)Us olo oyo =
w(t,s). The second term in the third line goes to zero since Oy ,/0s = —Uy /Ot

e When G(s) =4(s), theorem 2 easily follows by integrating [dsw(z,s) = [dsd(s—

t)us,s—d’{) = Z’{L‘,OyO :y(t)
e When G(s) =1, w(t,s) = U s_yy, so w(t,s =t) = U, gy, = y(2). 11



Non-autonomous unitary evolution can be made equivalent to

autonomous unitary evolution in one higher dimension

Add max 1 o
. . w w )
dimension 5t T 55 — H()w

Non-autonomous and unitary — Autonomous and unitary

H(t)=H'(t)

Define: w(t) = [dsw(t,s)|s)
Equivalent autonomous unitary evolution with respect to time-independent Hamil-
tonian H:
dw = _ . . _ _
d—tz—LHw, H=1®p,+H(s)=H ', w(0)=|yo) ® [ dsG(s)|s)

Sambe-Howland’s clock [Sambe, PRA, 1973; Howland, Mathematische Annalen, 1974] 12



Retrieval of solution for the original non-autonomous Schrodinger equation

Theorem 4. Given the solution . y(t) =U,oy, to the linear non-autonomous dynamical sys-
tem % ——iH()y() with initial conditiony,, |y(t)) can be simulated via unitary evolution with
respect to the time-independent Hamiltonian H in the following way. We define the quantum

state o (t) evolving according to

YO o], A=1ep+HE),
o =bo)bul®pm, = [[dsds’g(ss) 6 [dsglss) =1

where po = pg and py is also positive semidefinite.

Define: |y(¢)) =y(¢)/|ly(®)||

13



Retrieval of solution for the original non-autonomous Schrodinger equation

Theorem continued:

e (Protocol 1): With the choice of p, where g(s,s) = d(s), then |y(¢))(y(r)| = Tr; (o ()
where the trace is over the |s) mode.
o (Protocol 2): Alternatively, with the choice of measuring o(¢) in the mode |s=1),

for small e < 1, [y(2)){(y(r)| = Trs(a@L’i[’_E”E] dzs,j(;, ):):S )o®) which approximately
ste[—e,e] 1

retrieves |y(7)) with success probability [, Cl e
close to one if the density is g(s,s) localized near s ~ 0 (which is essentially the case in
Protocol 1).

| ds' g(s’,s’). The success probability is

14



Imperfect quantum clock register

When implementing the algorithms, one often needs to approximate the Dirac d-function
by a bounded and narrowly supported function ¢, which becomes zero or vanishingly small
outside a domain of O(w), for w < 1, namely, we consider

Yo (1) = / 6 (5 — ) U sy ds. (10)

— OO

As conventionally done, we choose §,, to be smooth and to satisfy, for z € R!,

du(z) =0 if |z| > w; f du(z)dz = 1.

7| Sew

One usually approximates 4., by the form

ooy — { 5B/ el <o
0 |z| > w,
where typical choices of 3(z) include 3(z) = 1—|8| and B(z) = 1(1+cos(wz)) [28]. In a discrete-variable formulation,
one can choose w = mh where m is the number of mesh points within the support of §,, and A is the grid size. For a
continuous-variable formulation, one can choose §,, to be a Gaussian function

Suls — ) = %e—(s—wmzw%,
W

which can give good approximation to y(t) if the width w is small. 15



Error estimates

Lemma 3. Lety (t) be given by equation (10) and y(t) be given by equation (2). Assume
\lyoll =1, and the normalised states are expressed as |y, (t)) =y,(t)/|y., (@), [y(2)) =
y()/|ly(®)|| =y(t) where ||.|| is the I-norm. Furthermore, Assume that

() d,,(+) is a probability distribution with mean p = o(w) and second moment w? (presumably
w K 1); assume that all its moments equal or larger than three are negligible with scaling
o(w?)

(ii) the Hamiltonian H(t) is continuously differentiable with respect to t.

Then, in the small w limit, the quantum fidelity Fid(.,.) between the ideal |y(t)) and the
approximated state |y, (t)) is

| - _ 10,0.y@)
Fid ([yo, (1)), [y (0)) := | (v (1) [y ()] = Iy, ()]

=1+ o(w?).

16



Simple quantum protocol: unitary system

po = [ dsdu(s)[s)(s| = e_":Ht —g

H=1® P, +H(S) (1)

~ |y(8))(y(?)]

|%0)



General non-autonomous linear PDE

General linear ODE/PDE:

du (1)
dt

=—iA(u(®)  u(0)=uo A() AT (1) (1)

Remark 1. While theorem 2 is stated for the unitary dynamics, the same result can also hold

for non-unitary dynamics (1) as long as the time-evolution operator for non-unitary case is
well-defined.

Remark 2. A conventional way to transform a non-autonomous system to an autonomous ones
is to add a new variable representing time |

Y i)y ()

r _, 9)
dt
y(0)=y, 7(0)=0.

Note that even if the original system is linear, this new autonomous system becomes nonlinear.
18



Turning general linear non-autonomous system to an

autonomous system with unitary dynamics

For a general linear dynamical system

du

T =-id@u, AW #A@),

we use the following decomposition
A1) =A1 () —iA2 (1),

I
(At -a' () =4 ()

where Al(t):%(A(t)—kAT(t)) A1), A1) =

o |

d
Apply Schrodingerisation — d—J; = —iH (1)y, H(t)=1QAx(t) + 1, A (1), H()=H'(1)

19



Turning general linear non-autonomous system to an

autonomous system with unitary dynamics

o0 [ ] [ ] L[] dy(t)
Schrodingerisation dt
y(0) = yo.

Non-autonomous and unitary

— —iH(tu(t), H(t)=H'()
Add max 1

dimension

Add max 2
du t . . .
% — i A(Du(t) u(0) = 1, dimension Yo

AT(t) # A(D) s T

Non-autonomous and non-unitary Autonomous and unitary

20



ngerisation formulation:

PDE becomes a Schrodinger-like equation in one
ension in a very simple way

Simulated on quantum device:
H(t) =At) 97+ A1(H) @1

: Any linear system of ODEs or PDE

du(t)
dt

A =(1/2)(A + AT = Al
A; = (i/2)(A — AT) = A]

— _A(H)u(t)

n — diag(—M/2,--- ,M/2 — 1)

We provide a simple recipe: Given any linear system of ODEs or PDE we find the corresponding
quantum system; and given any quantum system, can find corresponding linear ODE/PFE



Turning general linear non-autonomous system to an

autonomous system with unitary dynamics

Theorem 5. The linear non-autonomous dynamical system has a cor-
responding non-autonomous system y(t) that evolves with respect to the unitary U, =
T exp(—i f(; H(7)d7) and obeys L =-mwy  with initial condition y, = |=)ug, where |=) =
[ exp(—|&|)|€)dE. Then |u(t)) can be simulated via unitary evolution with respect to the time-

independent Hamiltonian H in the following way. We define the quantum state o(t) evolving
according to

do () .5
3 ——1[H,0(t)],

H=1,010p,+H() =1, 10 p,+ 7104, () + I, 041 (5),

o (0) = |yo)(yo|® po,  |y0) = ﬁ,

p= [fasas'e (sl ff dselss) =1,

where py = pg, and py is also positive semidefinite.
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Retrieval of solution of original non-autonomous linear PDE

Theorem continued:

e (Protocol 1): With the choice of p, where g(s,s) =4(s), then [y(2))(y(¢)| = Trs(co(2))
where the trace is over the |s) mode.
e (Protocol 2): Alternatively, with the choice of measuring o (¢) in the mode |s =), then

T, (@18, e ppey &7 I5=5"Y5=5" ) (1))
for smalle < 1, [y(?)) (y(?)| = [ D

imately retrieves [y(¢)) with success probability | re[—e.e] ds’ g(s’,s"). The success prob-
ability is close to one if the density g(s,s) is localized near s = 0.

which approx-

Given any measurement P~ = [ f€)|€)(€|dE, then |u(r)) can be retrieved from |y(z)) using
Po|y(1)) o |u(r)) with success probability O( f;~ f(€)e ™ dé([[u(2)[l/[luol)?).
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Simple quantum protocol: non-unitary system

e—z‘ﬂt

A : g
IjI:I,,’@]_@ﬁS

+7 ® Az(8) + I, ® A1(3)

Y(t)|e>0
R |u(t))(u(t)]

| ug)




Example: 1D Fokker-Planck equation

We consider the time-dependent Fokker—Planck equation

Oq (t,x) = g (1) V - (xq (t,x)) + 5 (1) Aq (¢,x) =: —iAq (2,x),

which characterises the evolution of the probability density function for a time-dependent
Ornstein—Uhlenbeck process dX(f) = —V,U(#,X(t)) dt++/28(t) dW(r), where the time-

dependent potential U(t,x) = g(t) "—; . By theorem 5, the Hamiltonian conservation part A; and
the interaction part A, are

Ar=—g()xp+i g;)l Ay =— g()1+,3(t)**2
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Example: 1D Fokker-Planck equation

We use the following observables (g(1)|x|g(?)), (g(¢)|3*|q(¢)) where |g(t)) is the normalised
quantum state of g (¢, x). In total, we consider three cases where explicit solutions are available:

Case (1): g(t) =0.5s, B(t) = 0.5s;
Case (2): g(t) =0.5s, B(t) =0.3;
Case (3): g (1) =0.55,3(¢) = 0.3s.

In all three cases, the initial condition ¢(0,-) = N (0.3,0.82). In simulation, we used the
Galerkin method with parameters N, = 128, ¢, = 0.2, N, = 128, ¢, = 2.0, N, = 64, ¢, = 2.0,
which amounts to using 7 qubits for time dilation, 7 qubits for Schrodingersation, 6 qubits for
approximating the original Fokker—Planck equation. Notably, we will numerically demonstrate
below that with a noiseless Hamiltonian simulation, we can simulate a 1D time-dependent PDE
only with a total of 20 qubits. Such an amount of noisy qubits is already available at present.
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Example: 1D Fokker-Planck equation

Mean {(u(t)|z|u(t)) Second moment (u(#)|2%|u(t))
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Unifying framework for digital quantum
simulation for time-dependent
Hamiltonians




Messy literature for dealing with time-dependent Hamiltonians

(mostly digital protocls) ... is there a way of unifying them?

e M. SUZUki, Proc. Jpn Acad. B (1993) ® Watkins, Wiebe, Roggerol and Lee’
[Suzuki's time operator] PRX Quantum (2024)

® Huyghebaert and D. Raedt, J. Phys. [Discrete clock]
A: Math. Gen. (1990) e Berry, Childs, Su, Wang, and Wiebe,
[integral-based query] Quantum (2020) [Continuous qDrift]

® Kieferova, Scherer, and Berry, PRA ® |keda, Abrar, Chuang, and Sugiura,
(2019) [Dyson's expansion] Quantum (2023)

® Mizuta and Fujii, Quantum (2023) ® Casares, Zini, and Arrazola, CFQM,

[Sambe’s space] (2024), arXiv:2403.13889
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Analogue algorithms as a starting point to identify new digital algorithms

Continuous formulations are exact:

 Different numerical schemes for PDEs arise from the original continuous
formulation of the PDE itself

* Different digital quantum algorithms for PDEs arise from the different
methods of discretising the position and momentum operators in
Schrodingerisation in its continuous formulation

* A continuous formulation for time-dependent Hamiltonian simulation can
similarly be discretised in different ways to give different digital algorithms

30



Analogue algorithms as a starting point to identify new digital algorithms

Continuous-time Mature methods Discrete-time (digital)
time-independent time-independent
Hamiltonian simulation Hamiltonian simulation

Our approach

Continuous-time Much less mature Digital

time-dependent time-dependent

Hamiltonian simulation Much less systematic Hamiltonian simulation
Messy literature
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Discretising the imperfect clock register

H=1dP, +H(S) ~(#)
~ [y(t))(y(t)

%0)

Discretising S and P,



Discretising the imperfect clock register

Sambe-Howland’s clock + Different discretization for time-independent dynamics
= Quantum Algorithm for time-dependent Hamiltonian Dynamics

w Discretize s Algorithm Remark
w—0 Operator-Splitting  Product formula, MPF, qDrift  Our work
w— 0 Taylor expansion Taylor-LCU Our work
Watkins, etc
o Qubitization-based; ' ’
I<wkl Finite-difference <o far limited to first-order 2024
e L _ Mizuta & Fu-
w5 0o Spectral Qubitization-based:; jii, 2023

log scale wrt error
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Recovering the product formula (l)

Sambe-Howland's clock: Ut + At t)|y) = (]I|e_iﬁm|t)|1,b)

Example: Digitized Adiabatic Computing H(s) = fi(s) h1 + fa(s) he
Step 1: Augmented Hamiltonian: H = p, ® I + f1(3) @ h1 + f2(8) ® hy
Step 2: decompose
H=A+Ay+A; A1=0:®01 Ay=fi(8)®h1 Az = f2(8) ® ho

Step 3: Apply time-independent product formula for ¢~ At

e—z’ﬁAt ~ e—iAlAte—iAgAte—iAgAt

— L{(t—l— At, t)|tb) ~ e—ifl(t)hlAte—ifg(t)tht |¢>
(we get a time-dependent alg!)
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Recovering the product formula (l)

For the general results, we can use L local operators (beyond L = 2 herein)
® For symmetric q cycled time-independent product formula with order n

H=A + A+ A3 Al =ps Q1 Az = f1(8) ® hy Az = f2(8) ® ho

Recover the Suzuki's formula
[Suzuki, Proc. Jpn. Acad. B (1993)]

® For symmetric q cycled time-independent product formula with order n
H=A+A+A3 Ai=f(8)Q@h1 Ay=p;QI A= f2(5) ®ho
This case always ends up with a time-dependent scheme using the same number of
matrix exponential (quantum gates) as the time-independent case.

Answers how to construct the minimum gate time-dependent product formula from
[Ikeda, Abrar, Chuang, and Sugiura, Quantum (2023)]
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Recovering the product formula (Il)

Example: Digitized Adiabatic Computing H(s) = fi(s) h1 + fa(s) he
Step 1: Augmented Hamiltonian: H = p, ® I + f1(3) ® hy + f2(3) ® hy
Step 2: decompose
H=A;+ A5 + Aq
=f1(8)®h1+p, QI  Ay=—-p;QI Az3=fo(8)®ha+p:®1

—iHAt

Step 3: Apply time-independent product formula for e , €.g., Strang-splitting,

one obtains

- (ffj_rﬁf fi(s)ds)ha _ i( [EA fa(s)ds)ha —i f” e fi(s)ds) 1
er er er

This recovers the formula in [Huyghebaert and D. Raedt, J. Phys. A: Math. Gen. (1990)]
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Recovering the product formula (Il)

It was discussed as unknown how to achieve high-order time-dependent product

formula using gates like exp{—i fst fk(r)drhk}
[lkeda, Abrar, Chuang, and Sugiura, Quantum (2023)]

Using Sambe-Howland's clock,

® if we choose any time-independent product formula,
® if we choose decomposition

H= A+ A+ A3
A1 =f1(8) ®h1 +p: T Ay =-p, QI  Az=fo(8)Qha+p, 1
then we get a time-dependent scheme with the above form

This answers their open question
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Recovering the multi-product formula

. k;
Time-independent case: et = ™M (UQ(A?)) "+ O(A)2 L where

j=1 kj
1 1 e 1 1 oy ] 1
ki? k;* k;/{? Qo 0
-k1—2(m—1) k2—2(m—1) L. k;f(m—l)- _aM_ _0_

= — k;
Time-dependent case: e #7At = Zjﬂil Qj (UQ(%—;)) T+ O(At)2m

By simplifying its effect on the state |t)_ [1), one gets time-dependent MPF
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Recovering gDrift

Time-independent case: suppose Hamiltonian H = [ dw A(w)H,

(qulft) e—‘iAtH P eiAtH ~ / dw A(w)e—?:Atpre‘iAtHw

>

WV Y .,
target ~~
average of local evolution

[Campbell, PRL, 2019]
® Use H =73, \(ps ® I + 5-H(3))

t+At H}.;;(S)
Ak

— U(t+ At t)pld(t + AL, t)T = Z)\kUkpUT, U = expy (— zf ds)
” t

° Use H=Y [y dr u(k,r)(ps ® I + - Hi(3))

— it recovers “continuous gDrift"
[Berry, Childs, Su, Wang, and Wiebe, Quantum (2020)] 39



Discovering higher performance time-dependent Hamiltonian

simulation methods

Adiabatic Google’s PageRank

H(t) =T(1 - f(t))h1 +Tf(t)ho
hi=I—|H)®(+|®", hy=UI-G)(I-G), G=085PT+0.15E

f@t)=sin(3t), T =40

FRS FRO Suz4 Ost4
1071 10-1 -
-1 5 1
e 1072 4
0 3]
Averaged error &, 1073 - 1073 - s 107 —o— MIN-(1)
: - 1074 4 :
(trace distance) L , Ny ; HDR-(11)
o B -5 N 105 - ALy 1075 4 —m— |ACS
T 105 N 10 o ]
‘\() . . 106 : 0(N—4)
162 162 162 162
Gate number Gate number Gate number Gate number

® |ACS refers to a Magnus-motivated scheme from [lkeda, Abrar, Chuang, and Sugiura, Quantum (2023)]

® HDR-(I) is our newly developed family of higher-order scheme
40




Summary of recovering old and discovering new schemes

Sambe-Howland’s Clock with Product Formula H = A; + Az + Az

Ordered Decomposition Time-independent Time-dependent Gate (general)  Gate (DAS)
jl = % ‘% Suzuki [6] Suzuki [21] 9N — q 9Aq — 2q + 1

2 = 111(S

_ o any product formula
Az = Hy(3) with g-cycles 2hg—q 2Ag—2¢+1
A1 = H1(8)
As = pe ® I any product formula 9Aq — 2q + 1 9Aq — 2q + 1
Ay = Hy(5) with g-cycles
Huyghebaert,

Ay = ps @ T+ Hy(3) first-order Trotter De Raedt [20] A A
Az =—ps QI . ., Huyghebaert,
Az = ps 1+ Hz(3) Strang splitting (g = 1) De Raedt [20] 2h -1 2A -1

any product formula _ _

N _ 'Gate (general)” means the number of gates for one-step approximation without any assumption
on original Hamiltonian, whereas “Gate (DAS)” means the number of gates for digital adiabatic simulation where
Hy(s) = fr(s)h,. We assume that time-independent decomposition has g-cycles as in

B(A+B)At :eAa,lAteBblAf . eBquteAaq+1At _|_ O(Atn—l—l) "



Summary of recovering old and discovering new schemes

Sambe-Howland’s Clock with Multi-Product Formula H = A; + A2 + A3z

Ordered Decomposition Base Time-independent Time-dependent MPF
MPF
AL =91 Theorem 9 (using continuous-clock)
As = Hq(8 : : - -
Ai _ H; Eg% Strang splitting 9] (Conjectured in [23] using discrete clock)

(ctf. [49] using Suzuki’s time operator)

A1 =ps @1+ H1(S)
As = —ps 1 see Theorem 10
Az =ps @ I+ Ha(8)
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Summary of recovering old and discovering new schemes

Sambe-Howland’s Clock with qDrift H = > n_, [ dr p(k, ) (ﬁs QI+ ﬁ’;c(j)))
where y is any probability measure for (k,7) € {1,2,--- ,A} x [0, 1]

Measures Time-independent Time-dependent Error Scaling Notes
qDrift qDrift

‘.u(.k’ r) = bk see (35) see Lemma 12  /
is independent of r [14]

recover ‘‘continuous
general measure p see (37) see Lemma 13  gDnift” [26];

see Lemma 14
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Problems become ‘simpler’ by lifting to a higher dimension!

Extra cost in quantum simulation of extra K dimensions costs
only O(K) and not exponential in K.

Might be classically more costly...but can potentially be more
efficient with quantum simulation!

1. Schrodingerisation: Linear non-Schrodinger’s equations become
Schrodinger-like equations

(e.g. dissipative equations become conservative equations)
JUST ADD ONE DIMENSION

2. . nonlinear problems become linear
DEPENDS ON PDE

3. Linear uncertain problems with L uncertain variables become
deterministic

JUST ADD L DIMENSIONS

4. Linear non-autonomous systems become linear autonomous
JUST ADD MAX TWO DIMENSIONS
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vvv Our philosophy: problems become

simpler by lifting to higher dimension

Classical computation: suffers from
curse of dimensionality

dimensional reduction
coarse graining

mean-field approximations
High-dimensional problems  moment closure Low-dimensional problems
Linear/certain/autonomous/ = - Nonlinear/uncertain/non-
simpler autonomous/other issues
— T Jift to a higher dimension  —— T —
(but not too high)

Quantum computation: can resolve
curse of dimensionality for PDEs ”



Reference list for Part Il: Non-autonomous PDEs

Non-autonomous PDEs:

- Quantum simulation for time-dependent Hamiltonians -- with applications to non-autonomous ordinary and partial
differential equations, Yu Cao, Shi Jin and Nana Liu*, arXiv: 2312.02817, Journal of Physics A, Vol 58, 155304, 2005

- A unifying framework for quantum simulation algorithms for time-dependent Hamiltonian dynamics, Yu Cao®*, Shi Jin
and Nana Liu*, arXiv: 2411.03180, 2024



Overview of summer lectures on Schrodingerisation

PART II: Special topics

* Nonlinear ODEs and PDEs

e Uncertain ODEs/PDEs

 Non-autonomous mapped to autonomous PDEs

* Application to linear algebra, ground state and thermal state
preparation

47
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Overview of summer lectures on Schrodingerisation

PART II: Special topics
* Nonlinear ODEs and PDEs
* Uncertain and stochastic ODEs/PDEs

 Non-autonomous mapped to autonomous PDEs

Application to linear algebra, ground state and thermal state

preparation




. Linear algebra, ground state and thermal state
preparation

“Turning iterative solvers into ODEs”

Based on:

“Quantum simulation of discrete linear dynamical systems and simple iterative methods
in linear algebra via Schrodingerisation,” (arXiv:2304.02865), Proceedings of the Royal
Society A, 2024, Shi Jin and Nana Liu*

“Quantum simulation of partial differential equations via Schrodingerisation”,
Physical Review Letters (arXiv: 2212.13969), Shi Jin, Nana Liu, Yue Yu



Linear systems of equations

e Classical methods -

lterative algorithms: e.g. Jacobi method O(saDNy)

Other algorithms: e.g. Classical Gaussian elimination O(poly(D))

* Most well-known early quantum example - Want to prepare |y) oc A~'|b)

Harrow, Hassidim and Lloyd HHL (2009): O(saK? /€)
Sparse Kk 4: condition number

Well-conditioned



Application of Schrodingerisation to linear algebra

Solve linear algebra problems iteratively:
Y1 =Gy +8, keZt U{0}

where yi,¢ € R? and G is a d x d matrix. Here, k labels the time step in the iterative approach

Define: X = (yr, 1T

G
Xp1 =Cxp, C= (OT f) /

where Cis a (d + 1) x (d + 1) matrix and 01 = (0, ..., 0) is d-dimensional. We can rewrite this in
the form

Xk+1 — Xk = (yk+10_ yk) = (C — Ixy.

arXiv:2304:02865



Application of Schrodingerisation to linear algebra

Xkp1 — Xk = (yk+10_ yk) = (C — Dxx.

From this form, it is simple to see, for instance, that the iterative method converges or reaches its
steady state when v 1 ~ vy, i.e.

Yer1 = Yk = (G =Dy +8—0,
which coincides with identifying the ground state of C — I. Since
xes1 — % = (C — Dxg = (C — )CFxg = C*(Cxp — x0) = CX(x1 — x0),

then
k
[1xk+1 — xkl| < [ICI* %1 — x0l]-

When the spectral radius of C is 7(C) =7(G) < 1, then ||C|| <1 for any subordinate norm || - ||, so
the convergence rate ||C]| |k for the state x is exponential with time step k



Application of Schrodingerisation to linear algebra

Solve linear algebra problems iteratively:

Yrk+1 = Gy + g, kEZ+U{0}

C' — I negative eigenvalues
b dx
Iterative systems are discrete-time limits of dynamical systems...
Now we can simulate dynamical systems with quantum simulation!




Quantum linear systems of equations

* Quantum Jacobi method Ais D x D matrix
Want to prepare |y) oc A~1|b) A=A+ M, M completely off-diagonal
Yre+1 = Gyi + g, G=-A"'M, g=A""'b
Yk+1 = Yk, when Ay =

dx
) - O=x

where H = —(C — I) = H', which implies the scenario G=G" and g =0
Apply Schrodingerisation



ngerisation formulation:

PDE becomes a Schrodinger-like equation in one
ension in a very simple way

Simulated on quantum device:
H(t) =At) 97+ A1(H) @1

: Any linear system of ODEs or PDE

du(t)
dt

A =(1/2)(A + AT = Al
A; = (i/2)(A — AT) = A]

— _A(H)u(t)

n — diag(—M/2,--- ,M/2 — 1)

We provide a simple recipe: Given any linear system of ODEs or PDE we find the corresponding
quantum system; and given any quantum system, can find corresponding linear ODE/PFE



Quantum linear systems of equations: analog simulation

dx
dt
where H = —(C — I) = H', which implies the scenario G=G" and ¢ =0

—Hzx, x(o) = X0,

[w(t))cv-pv = exp(—iHcy.pvt)|w(0))cv-pv.

Heyv_py = H®1)

10



Quantum linear systems of equations: analog simulation

Initial state: || T Z( 0);il7) || || o|E;), ajeC.
0 0
=0

Since H is Hermitian, it has orthonormal eigenvectors {|Ej)}?=0 with corresponding eigenvalues

{Ej};.izo, where Ej < - - - < E;. The normalization of the state is defined as || - ||* = Zz_o (-);|?. Then

d

ol g 1 .
KO = (i e 0 = g 24 1B

j=0

11



Quantum linear systems of equations: analog simulation

We can write

d

Y aje M E))

j=0

2 —
1x(®)| % = |le x| |? =

_ Z |aj|2e—2E}-t

—2Eot(| (2 2 —2tA
=e "(lapl” + ln |7 €77 + L),

where the spectral gap is Ac=E; —Eg>0and L= Zgzz Mk exp(—2t(Ex — Ep)). To determine
how long it takes to evolve such a quantum system, we say t = ¢f when the fidelity between |x(t))
and the true ground state |xg) = |Eg) of H is greater or equal to1 — 6,8 >0, i.e.

|0! |2 —2Eots

© >1—3.

F(|Eo), 1x(t))) = |(x(t7) |[Eo) | = ol

12



Quantum linear systems of equations: analog simulation

Hybrid DV-CV quantum simulation Hpy ® 1)

1 o1 |%(1 — 8) 1
tp = 2Ac " ( g |26 (1 —L(1 - 3)/(|010|25)))

When L is small (relative to |eg|?), we mean L < 8|eg|?/(1—38) and § <1, we have b 2
(1/2Ac¢)) In(|az|?/(8]eg|?)). For larger L, we simply include more terms in L to find tr. If the first

two eigenstates |Egp) and |E;) dominate so that |o; >~ 1— |ap|? then

1 1/ 1
2 7 (3 (o =)

13



Quantum linear systems of equations: digital simulation

Cost in digital quantum simulation to get steady-state solution:

— S 4: sparsity of A
O (3alA M]|imas A: sparsity
e|O‘O|AC’ H ' Hmaa:: max entry

Ac: spectral gap

14



Application to ground state preparation: analog algorithm

Start with state: [u(0)) = ZO |E;), a;€C
Evol e—Ht 1 D-1 o i
volve: £)) = 0)) = _—E; '
O = T = g 2% 1)
Long time limit: |u(t)) — |Eo) Ground state of H

1 1 1
= El“(S (|050|2 ‘1)) A= B -

15



Application to ground state preparation: digital algorithm

Start with state: [u(0)) = ZO |E;), a;€C
Evol e—Ht 1 D-1 o i
volve: £)) = 0)) = _—E; '
O = T = g 2% 1)
Long time limit: |u(t)) — |Eo) Ground state of H

5 (S| H|lmaz
@, _ _
( |Oé() Aé ) A El EO

16



Application to thermal state preparation: digital algorithm

Start with state: u(0)) o< Y | EpEy)
k
Evolve: paives = Tra (Ju(t = 1/(21)) (u(t = 1/(2T))))

paives = Y€ T EL) (B
k

Let Schrodingerisation perform this evolution

1 /D

O (SHmwTG Z) Partition function Z

17



Maximum eigenvector and eigenvalue: analog algorithm

* Quantum power method IL>AM>A>...> N
. . d
Prepare maximum eigenvector of C To = ). 1 ViCi
T (1.1
B ok rTrxy1 TRCx
xr = Cxi_1 = C%xp. A\~ KT — K,;n K

18



Maximum eigenvector and eigenvalue: digital algorithm

* Quantum power method IL>AM>A>...> N
. . d
Prepare maximum eigenvector of C To = ). 1 ViCi
T (1.1
k LT lTK41 r.-Cx
x. = Cxr_1 = CFxp. A\ & KT 1 ‘I; K

Cost in digital quantum simulation to get max eigenvector:

%, (scHCHmam)

elv1|Ac

Max eigenvalue: extra O(1/e?) 15



NOTE: All previous algorithms can have up to exponential

improvement in error epsilon using modified ancilla initial state

d
{ u(t) = Alt)u(t) te(0.T)
U(O) = Uy,

Digital quantum algorithm:

Queries to A Queries to ug
Time-dependent A(t) 5(”!1,1?%')” aaT(log 1)?) O( lfr;%l)l )
Time-independent A 5( ,U:E'%)l a1 log %) O( JE’%'J )
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Reference list for Part Il: Linear algebra, ground state

and thermal state preparation

Linear algebra, ground state and thermal state preparation

- Quantum simulation of discrete linear dynamical systems and simple iterative methods in linear algebra via
Schrodingerisation, Shi Jin, Nana Liu*, arXiv: 2304.02865, Proceedings of the Royal Society A, Vol 480, 20230370,
2024

- Quantum preconditioning method for linear systems problems via Schrodingerisation, Shi Jin*, Nana Liu* and
Chuwen Ma*, Yue Yu*, arXiv: 2505.06866, 2025

- On Schrodingerisation based quantum algorithms for linear dynamical systems with inhomogeneous terms, Shi Jin,
Nana Liu and Chuwen Ma*, arXiv: 2402.14696, 2024

- Quantum simulation of partial differential equations via Schrodingerisation, Shi Jin, Nana Liu*, Yue Yu, arXiv:
2212.13969, Physical Review Letters, Vol 133, 230602, 2024
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Overview of summer lectures on Schrodingerisation

PART II: Special topics

* Nonlinear ODEs and PDEs

e Uncertain ODEs/PDEs

 Non-autonomous mapped to autonomous PDEs

* Application to linear algebra, ground state and thermal state
preparation

22
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