
Quantum algorithms for factorization and

other problems in cryptanalysis

Pierre-Alain Fouque

Centre Inria de l’Université de Rennes

Contents

1. Introduction

2. Basic Circuits: Deutsch-Jozsa and Simon algorithm

3. Shor algorithm

4. Other quantum factorisation algorithms

1

Cryptanalysis and Security Levels

Cryptography

• Science of “secret”: Confidentiality, Integrity, and Authentication

• Cryptosystem: encryption and signature schemes

• Public-Key vs. Secret-Key Cryptography

Cryptanalysis

• Adversaries ≈ (classical or quantum) algorithms

• Complexity of the algorithms to evaluate the security parameters

• For Public-Key Cryptography: security is not perfect and use

computational assumption: not possible to break the cryptosystem

except if you break a mathematical hard problem

Security Levels

• If the number of steps is 2128, the adversary requires too much time

• The logarithm is the security level and 128 is good, while 64 is low

2

Cryptanalysis and Security Levels

Cryptography

• Science of “secret”: Confidentiality, Integrity, and Authentication

• Cryptosystem: encryption and signature schemes

• Public-Key vs. Secret-Key Cryptography

Cryptanalysis

• Adversaries ≈ (classical or quantum) algorithms

• Complexity of the algorithms to evaluate the security parameters

• For Public-Key Cryptography: security is not perfect and use

computational assumption: not possible to break the cryptosystem

except if you break a mathematical hard problem

Security Levels

• If the number of steps is 2128, the adversary requires too much time

• The logarithm is the security level and 128 is good, while 64 is low

2

Cryptanalysis and Security Levels

Cryptography

• Science of “secret”: Confidentiality, Integrity, and Authentication

• Cryptosystem: encryption and signature schemes

• Public-Key vs. Secret-Key Cryptography

Cryptanalysis

• Adversaries ≈ (classical or quantum) algorithms

• Complexity of the algorithms to evaluate the security parameters

• For Public-Key Cryptography: security is not perfect and use

computational assumption: not possible to break the cryptosystem

except if you break a mathematical hard problem

Security Levels

• If the number of steps is 2128, the adversary requires too much time

• The logarithm is the security level and 128 is good, while 64 is low
2

Cryptography: Hard Computational problems

RSA (Rivest-Shamir-Adleman) describe a cryptosystem whose security is

based on the untractability to solve the factorisation problem

Factorisation
Given an integer N = pq, where p and q are two primes. Recover p ?

• 8051 ?

• 91 ?

• 91 = 100− 9 = 102 − 32 = (10− 3)(10 + 3) = 7× 13

• 8051 = 8100− 49 = 902 − 72 = (90− 7)(90 + 7) = 83× 97

Classical algorithm:

• Number Field Sieve (NFS). Complexity: 2Õ(n1/3) (constants

matter...) where n is the size of N: n = log2(N)

• Record: 250-digits (830 bits): 2700 computer years

• ≈ 2128 for a 2048-bit modulus

3

Cryptography: Hard Computational problems

RSA (Rivest-Shamir-Adleman) describe a cryptosystem whose security is

based on the untractability to solve the factorisation problem

Factorisation
Given an integer N = pq, where p and q are two primes. Recover p ?

• 8051 ?

• 91 ?

• 91 = 100− 9 = 102 − 32 = (10− 3)(10 + 3) = 7× 13

• 8051 = 8100− 49 = 902 − 72 = (90− 7)(90 + 7) = 83× 97

Classical algorithm:

• Number Field Sieve (NFS). Complexity: 2Õ(n1/3) (constants

matter...) where n is the size of N: n = log2(N)

• Record: 250-digits (830 bits): 2700 computer years

• ≈ 2128 for a 2048-bit modulus

3

Cryptography: Hard Computational problems

RSA (Rivest-Shamir-Adleman) describe a cryptosystem whose security is

based on the untractability to solve the factorisation problem

Factorisation
Given an integer N = pq, where p and q are two primes. Recover p ?

• 8051 ?

• 91 ?

• 91 = 100− 9 = 102 − 32 = (10− 3)(10 + 3) = 7× 13

• 8051 = 8100− 49 = 902 − 72 = (90− 7)(90 + 7) = 83× 97

Classical algorithm:

• Number Field Sieve (NFS). Complexity: 2Õ(n1/3) (constants

matter...) where n is the size of N: n = log2(N)

• Record: 250-digits (830 bits): 2700 computer years

• ≈ 2128 for a 2048-bit modulus

3

Cryptography: Hard Computational problems

RSA (Rivest-Shamir-Adleman) describe a cryptosystem whose security is

based on the untractability to solve the factorisation problem

Factorisation
Given an integer N = pq, where p and q are two primes. Recover p ?

• 8051 ?

• 91 ?

• 91 = 100− 9 = 102 − 32 = (10− 3)(10 + 3) = 7× 13

• 8051 = 8100− 49 = 902 − 72 = (90− 7)(90 + 7) = 83× 97

Classical algorithm:

• Number Field Sieve (NFS). Complexity: 2Õ(n1/3) (constants

matter...) where n is the size of N: n = log2(N)

• Record: 250-digits (830 bits): 2700 computer years

• ≈ 2128 for a 2048-bit modulus

3

Cryptography: Hard Computational problems

RSA (Rivest-Shamir-Adleman) describe a cryptosystem whose security is

based on the untractability to solve the factorisation problem

Factorisation
Given an integer N = pq, where p and q are two primes. Recover p ?

• 8051 ?

• 91 ?

• 91 = 100− 9 = 102 − 32 = (10− 3)(10 + 3) = 7× 13

• 8051 = 8100− 49 = 902 − 72 = (90− 7)(90 + 7) = 83× 97

Classical algorithm:

• Number Field Sieve (NFS). Complexity: 2Õ(n1/3) (constants

matter...) where n is the size of N: n = log2(N)

• Record: 250-digits (830 bits): 2700 computer years

• ≈ 2128 for a 2048-bit modulus

3

Cryptography: Hard Computational problems

RSA (Rivest-Shamir-Adleman) describe a cryptosystem whose security is

based on the untractability to solve the factorisation problem

Factorisation
Given an integer N = pq, where p and q are two primes. Recover p ?

• 8051 ?

• 91 ?

• 91 = 100− 9 = 102 − 32 = (10− 3)(10 + 3) = 7× 13

• 8051 = 8100− 49 = 902 − 72 = (90− 7)(90 + 7) = 83× 97

Classical algorithm:

• Number Field Sieve (NFS). Complexity: 2Õ(n1/3) (constants

matter...) where n is the size of N: n = log2(N)

• Record: 250-digits (830 bits): 2700 computer years

• ≈ 2128 for a 2048-bit modulus

3

Cryptography: Hard Computational problems (II)

Discrete Logarithm
Let p a prime and q a prime divisor of p − 1, and g a generator of the

q-order subgroup of (Z/pZ)∗. Given y = g x mod p, recover x ?

Example: g = 2 in (Z/11Z)∗

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 5 mod 11, 25 = 10 mod 11, 26 =

9 mod 11, 27 = 7 mod 11, 28 = 3 mod 11, 29 = 6 mod 11, 210 =

1 mod 11...

• What is the subgroup generated by 4 ? generated by 10 ?

• As (Z/pZ)∗ is cyclic, for all d |p − 1, there is a subgroup of order d

Complexity and Security level

• Classical algorithms: Pollard
√
q and NFS: 2Õ((log2 p)

1/3)

• p a 2048-bit prime and q a 256-bit prime

4

Cryptography: Hard Computational problems (II)

Discrete Logarithm
Let p a prime and q a prime divisor of p − 1, and g a generator of the

q-order subgroup of (Z/pZ)∗. Given y = g x mod p, recover x ?

Example: g = 2 in (Z/11Z)∗

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 5 mod 11, 25 = 10 mod 11, 26 =

9 mod 11, 27 = 7 mod 11, 28 = 3 mod 11, 29 = 6 mod 11, 210 =

1 mod 11...

• What is the subgroup generated by 4 ? generated by 10 ?

• As (Z/pZ)∗ is cyclic, for all d |p − 1, there is a subgroup of order d

Complexity and Security level

• Classical algorithms: Pollard
√
q and NFS: 2Õ((log2 p)

1/3)

• p a 2048-bit prime and q a 256-bit prime

4

Cryptography: Hard Computational problems (II)

Discrete Logarithm
Let p a prime and q a prime divisor of p − 1, and g a generator of the

q-order subgroup of (Z/pZ)∗. Given y = g x mod p, recover x ?

Example: g = 2 in (Z/11Z)∗

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 5 mod 11, 25 = 10 mod 11, 26 =

9 mod 11, 27 = 7 mod 11, 28 = 3 mod 11, 29 = 6 mod 11, 210 =

1 mod 11...

• What is the subgroup generated by 4 ? generated by 10 ?

• As (Z/pZ)∗ is cyclic, for all d |p − 1, there is a subgroup of order d

Complexity and Security level

• Classical algorithms: Pollard
√
q and NFS: 2Õ((log2 p)

1/3)

• p a 2048-bit prime and q a 256-bit prime

4

Cryptography: Hard Computational problems (II)

Discrete Logarithm
Let p a prime and q a prime divisor of p − 1, and g a generator of the

q-order subgroup of (Z/pZ)∗. Given y = g x mod p, recover x ?

Example: g = 2 in (Z/11Z)∗

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 5 mod 11, 25 = 10 mod 11, 26 =

9 mod 11, 27 = 7 mod 11, 28 = 3 mod 11, 29 = 6 mod 11, 210 =

1 mod 11...

• What is the subgroup generated by 4 ? generated by 10 ?

• As (Z/pZ)∗ is cyclic, for all d |p − 1, there is a subgroup of order d

Complexity and Security level

• Classical algorithms: Pollard
√
q and NFS: 2Õ((log2 p)

1/3)

• p a 2048-bit prime and q a 256-bit prime

4

Cryptography: Hard Computational problems (II)

Discrete Logarithm
Let p a prime and q a prime divisor of p − 1, and g a generator of the

q-order subgroup of (Z/pZ)∗. Given y = g x mod p, recover x ?

Example: g = 2 in (Z/11Z)∗

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 5 mod 11, 25 = 10 mod 11, 26 =

9 mod 11, 27 = 7 mod 11, 28 = 3 mod 11, 29 = 6 mod 11, 210 =

1 mod 11...

• What is the subgroup generated by 4 ? generated by 10 ?

• As (Z/pZ)∗ is cyclic, for all d |p − 1, there is a subgroup of order d

Complexity and Security level

• Classical algorithms: Pollard
√
q and NFS: 2Õ((log2 p)

1/3)

• p a 2048-bit prime and q a 256-bit prime

4

Cryptography: Hard Computational problems (II)

Discrete Logarithm
Let p a prime and q a prime divisor of p − 1, and g a generator of the

q-order subgroup of (Z/pZ)∗. Given y = g x mod p, recover x ?

Example: g = 2 in (Z/11Z)∗

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 5 mod 11, 25 = 10 mod 11, 26 =

9 mod 11, 27 = 7 mod 11, 28 = 3 mod 11, 29 = 6 mod 11, 210 =

1 mod 11...

• What is the subgroup generated by 4 ? generated by 10 ?

• As (Z/pZ)∗ is cyclic, for all d |p − 1, there is a subgroup of order d

Complexity and Security level

• Classical algorithms: Pollard
√
q and NFS: 2Õ((log2 p)

1/3)

• p a 2048-bit prime and q a 256-bit prime

4

Cryptography: Hard Computational problems (II)

Discrete Logarithm
Let p a prime and q a prime divisor of p − 1, and g a generator of the

q-order subgroup of (Z/pZ)∗. Given y = g x mod p, recover x ?

Example: g = 2 in (Z/11Z)∗

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 5 mod 11, 25 = 10 mod 11, 26 =

9 mod 11, 27 = 7 mod 11, 28 = 3 mod 11, 29 = 6 mod 11, 210 =

1 mod 11...

• What is the subgroup generated by 4 ? generated by 10 ?

• As (Z/pZ)∗ is cyclic, for all d |p − 1, there is a subgroup of order d

Complexity and Security level

• Classical algorithms: Pollard
√
q and NFS: 2Õ((log2 p)

1/3)

• p a 2048-bit prime and q a 256-bit prime

4

Shor’s quantum factorisation algorithm

Breakthrough

• Polynomial-time algorithm O(n2) and O(n) qubits

• If we were able to built a noise-free quantum algorithm, we will be

able to break all communications...

• Post-Quantum Cryptography: classical algorithms where hard

problems are conjectured to resist quantum computers ...

• E.g.: hard lattice problems, coding problems, ...

• Standards are available since 2024 and the transition to PQC begins

5

Shor’s quantum factorisation algorithm

Breakthrough

• Polynomial-time algorithm O(n2) and O(n) qubits

• If we were able to built a noise-free quantum algorithm, we will be

able to break all communications...

• Post-Quantum Cryptography: classical algorithms where hard

problems are conjectured to resist quantum computers ...

• E.g.: hard lattice problems, coding problems, ...

• Standards are available since 2024 and the transition to PQC begins

5

Shor’s quantum factorisation algorithm

Breakthrough

• Polynomial-time algorithm O(n2) and O(n) qubits

• If we were able to built a noise-free quantum algorithm, we will be

able to break all communications...

• Post-Quantum Cryptography: classical algorithms where hard

problems are conjectured to resist quantum computers ...

• E.g.: hard lattice problems, coding problems, ...

• Standards are available since 2024 and the transition to PQC begins

5

Shor’s quantum factorisation algorithm

Breakthrough

• Polynomial-time algorithm O(n2) and O(n) qubits

• If we were able to built a noise-free quantum algorithm, we will be

able to break all communications...

• Post-Quantum Cryptography: classical algorithms where hard

problems are conjectured to resist quantum computers ...

• E.g.: hard lattice problems, coding problems, ...

• Standards are available since 2024 and the transition to PQC begins

5

Shor’s quantum factorisation algorithm

Breakthrough

• Polynomial-time algorithm O(n2) and O(n) qubits

• If we were able to built a noise-free quantum algorithm, we will be

able to break all communications...

• Post-Quantum Cryptography: classical algorithms where hard

problems are conjectured to resist quantum computers ...

• E.g.: hard lattice problems, coding problems, ...

• Standards are available since 2024 and the transition to PQC begins

5

Basic Circuits: Deutsch-Jozsa

and Simon algorithms

Partial Measurement of a 2-qubit

• |ψ⟩ = α |0.0⟩+β |0.1⟩+ γ |1.0⟩+ δ |1.1⟩, |α|2 + |β|2 + |γ|2 + |δ|2 = 1

• |ψ⟩
0 or 1

?

• Let |ψ⟩ =
√
2
2 |0.0⟩+ 1

2 |0.1⟩+
1
2 |1.1⟩. If one measures the first qubit

as 1, what is the second qubit ?

• the second is |1⟩, but what if we observe |0⟩ ?

• |ψ⟩ = |0⟩
2 · (

√
2 |0⟩+ |1⟩) + 1

2 |1⟩ |1⟩, the 2nd is
√

2
3 |0⟩+

1√
3
|1⟩

• Exo: If |ψ⟩ = 1
5 (2 |0.0.0⟩ − |0.0.1⟩+ 3 |0.1.0⟩+ |0.1.1⟩ − 2 |1.0.0⟩+

2 |1.0.1⟩+
√
2 |1.1.1⟩), and we measure 0.0, what is the last qubit ?

6

Partial Measurement of a 2-qubit

• |ψ⟩ = α |0.0⟩+β |0.1⟩+ γ |1.0⟩+ δ |1.1⟩, |α|2 + |β|2 + |γ|2 + |δ|2 = 1

• |ψ⟩
0 or 1

?

• Let |ψ⟩ =
√
2
2 |0.0⟩+ 1

2 |0.1⟩+
1
2 |1.1⟩. If one measures the first qubit

as 1, what is the second qubit ?

• the second is |1⟩, but what if we observe |0⟩ ?

• |ψ⟩ = |0⟩
2 · (

√
2 |0⟩+ |1⟩) + 1

2 |1⟩ |1⟩, the 2nd is
√

2
3 |0⟩+

1√
3
|1⟩

• Exo: If |ψ⟩ = 1
5 (2 |0.0.0⟩ − |0.0.1⟩+ 3 |0.1.0⟩+ |0.1.1⟩ − 2 |1.0.0⟩+

2 |1.0.1⟩+
√
2 |1.1.1⟩), and we measure 0.0, what is the last qubit ?

6

Partial Measurement of a 2-qubit

• |ψ⟩ = α |0.0⟩+β |0.1⟩+ γ |1.0⟩+ δ |1.1⟩, |α|2 + |β|2 + |γ|2 + |δ|2 = 1

• |ψ⟩
0 or 1

?

• Let |ψ⟩ =
√
2
2 |0.0⟩+ 1

2 |0.1⟩+
1
2 |1.1⟩. If one measures the first qubit

as 1, what is the second qubit ?

• the second is |1⟩, but what if we observe |0⟩ ?

• |ψ⟩ = |0⟩
2 · (

√
2 |0⟩+ |1⟩) + 1

2 |1⟩ |1⟩, the 2nd is
√

2
3 |0⟩+

1√
3
|1⟩

• Exo: If |ψ⟩ = 1
5 (2 |0.0.0⟩ − |0.0.1⟩+ 3 |0.1.0⟩+ |0.1.1⟩ − 2 |1.0.0⟩+

2 |1.0.1⟩+
√
2 |1.1.1⟩), and we measure 0.0, what is the last qubit ?

6

Partial Measurement of a 2-qubit

• |ψ⟩ = α |0.0⟩+β |0.1⟩+ γ |1.0⟩+ δ |1.1⟩, |α|2 + |β|2 + |γ|2 + |δ|2 = 1

• |ψ⟩
0 or 1

?

• Let |ψ⟩ =
√
2
2 |0.0⟩+ 1

2 |0.1⟩+
1
2 |1.1⟩. If one measures the first qubit

as 1, what is the second qubit ?

• the second is |1⟩, but what if we observe |0⟩ ?

• |ψ⟩ = |0⟩
2 · (

√
2 |0⟩+ |1⟩) + 1

2 |1⟩ |1⟩, the 2nd is
√

2
3 |0⟩+

1√
3
|1⟩

• More generally, |ψ⟩ = |0⟩ · (α |0⟩+ β |1⟩) + |1⟩ · (γ |0⟩+ δ |1⟩), and if

one measures |0⟩ for the first qubit, the second
α√

|α|2+|β|2
|0⟩+ β√

|α|2+|β|2
|1⟩

• Exo: If |ψ⟩ = 1
5 (2 |0.0.0⟩ − |0.0.1⟩+ 3 |0.1.0⟩+ |0.1.1⟩ − 2 |1.0.0⟩+

2 |1.0.1⟩+
√
2 |1.1.1⟩), and we measure 0.0, what is the last qubit ?

6

Partial Measurement of a 2-qubit

• |ψ⟩ = α |0.0⟩+β |0.1⟩+ γ |1.0⟩+ δ |1.1⟩, |α|2 + |β|2 + |γ|2 + |δ|2 = 1

• |ψ⟩
0 or 1

?

• Let |ψ⟩ =
√
2
2 |0.0⟩+ 1

2 |0.1⟩+
1
2 |1.1⟩. If one measures the first qubit

as 1, what is the second qubit ?

• the second is |1⟩, but what if we observe |0⟩ ?

• |ψ⟩ = |0⟩
2 · (

√
2 |0⟩+ |1⟩) + 1

2 |1⟩ |1⟩, the 2nd is
√

2
3 |0⟩+

1√
3
|1⟩

• Exo: If |ψ⟩ = 1
5 (2 |0.0.0⟩ − |0.0.1⟩+ 3 |0.1.0⟩+ |0.1.1⟩ − 2 |1.0.0⟩+

2 |1.0.1⟩+
√
2 |1.1.1⟩), and we measure 0.0, what is the last qubit ?

6

Quantum oracle gate

Oracle

• Let f : E −→ Z/2Z be a function

• (Z/2Z,+) = ({0, 1},⊕)

• F : E ×Z/2Z −→ E ×Z/2Z, (x , y) 7−→ (x , y ⊕ f (x)), is a bijection

• Proof: F−1 = F , F (F (x , y)) = F (x , y ⊕ f (x)) = (x , y)

• Deutsch-Jozsa Oracle f : (Z/2Z)k −→ Z/2Z:
x1 x1

...
...

xk xk

y y ⊕ f (x1, . . . , xk)

Of

7

Quantum oracle gate

Oracle

• Let f : E −→ Z/2Z be a function

• (Z/2Z,+) = ({0, 1},⊕)

• F : E ×Z/2Z −→ E ×Z/2Z, (x , y) 7−→ (x , y ⊕ f (x)), is a bijection

• Proof: F−1 = F , F (F (x , y)) = F (x , y ⊕ f (x)) = (x , y)

• Deutsch-Jozsa Oracle f : (Z/2Z)k −→ Z/2Z:
x1 x1

...
...

xk xk

y y ⊕ f (x1, . . . , xk)

Of

7

Quantum oracle gate

Oracle

• Let f : E −→ Z/2Z be a function

• (Z/2Z,+) = ({0, 1},⊕)

• F : E ×Z/2Z −→ E ×Z/2Z, (x , y) 7−→ (x , y ⊕ f (x)), is a bijection

• Proof: F−1 = F , F (F (x , y)) = F (x , y ⊕ f (x)) = (x , y)

• Deutsch-Jozsa Oracle f : (Z/2Z)k −→ Z/2Z:
x1 x1

...
...

xk xk

y y ⊕ f (x1, . . . , xk)

Of

7

Deutsch-Jozsa problem

Goal

• Let f : {0, 1} −→ {0, 1}.
• There are 4 such functions: two are constant and two are balanced

(0 and 1 are taken the same number of times)

f0 =

{
0 7→ 0

1 7→ 0
f1 =

{
0 7→ 1

1 7→ 1
f2 =

{
0 7→ 0

1 7→ 1
f3 =

{
0 7→ 1

1 7→ 0

• Decide if f is constant or balanced ?

• Classically, ask 2 queries (f (0) and f (1)), quantumly 1 query !

Exponential gap: Let f : {0, 1}n −→ {0, 1} and we have the promise f is

either balanced or constant.

Classically, one need at most 2n−1 + 1 queries, while only 1 quantumly !

8

Deutsch-Jozsa problem

Goal

• Let f : {0, 1} −→ {0, 1}.
• There are 4 such functions: two are constant and two are balanced

(0 and 1 are taken the same number of times)

f0 =

{
0 7→ 0

1 7→ 0
f1 =

{
0 7→ 1

1 7→ 1
f2 =

{
0 7→ 0

1 7→ 1
f3 =

{
0 7→ 1

1 7→ 0

• Decide if f is constant or balanced ?

• Classically, ask 2 queries (f (0) and f (1)), quantumly 1 query !

Exponential gap: Let f : {0, 1}n −→ {0, 1} and we have the promise f is

either balanced or constant.

Classically, one need at most 2n−1 + 1 queries, while only 1 quantumly !

8

Deutsch-Jozsa problem

Goal

• Let f : {0, 1} −→ {0, 1}.
• There are 4 such functions: two are constant and two are balanced

(0 and 1 are taken the same number of times)

f0 =

{
0 7→ 0

1 7→ 0
f1 =

{
0 7→ 1

1 7→ 1
f2 =

{
0 7→ 0

1 7→ 1
f3 =

{
0 7→ 1

1 7→ 0

• Decide if f is constant or balanced ?

• Classically, ask 2 queries (f (0) and f (1)), quantumly 1 query !

Exponential gap: Let f : {0, 1}n −→ {0, 1} and we have the promise f is

either balanced or constant.

Classically, one need at most 2n−1 + 1 queries, while only 1 quantumly !

8

Deutsch-Jozsa Quantum Circuit (n = 1)

•

|0⟩ out

|1⟩

H

Of

H

H

• with

|x⟩ |x⟩

|y⟩ |y ⊕ f (x)⟩
Of

•

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

|ψ1⟩ = (|0⟩+ |1⟩). |1⟩,
|ψ2⟩ = (|0⟩+ |1⟩).(|0⟩ − |1⟩) = 0.0− 0.1 + 1.0− 1.1

9

Deutsch-Jozsa Quantum Circuit (n = 1)

•

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

|ψ1⟩ = (|0⟩+ |1⟩). |1⟩,
|ψ2⟩ = (|0⟩+ |1⟩).(|0⟩ − |1⟩) = 0.0− 0.1 + 1.0− 1.1

9

Deutsch-Jozsa Quantum Circuit (n = 1)

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

|x⟩ |x⟩

|y⟩ |y ⊕ f (x)⟩
Of

• |ψ2⟩ = 0.0− 0.1 + 1.0− 1.1,

• |ψ3⟩ = 0.(0⊕ f (0))− 0.(1⊕ f (0))︸ ︷︷ ︸
A

+1.(0⊕ f (1))− 1.(1⊕ f (1))︸ ︷︷ ︸
B

• |ψ3⟩ = (−1)f (0)(0.0− 0.1) + (−1)f (1)(1.0− 1.1)

10

Deutsch-Jozsa Quantum Circuit (n = 1)

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

|x⟩ |x⟩

|y⟩ |y ⊕ f (x)⟩
Of

• |ψ2⟩ = 0.0− 0.1 + 1.0− 1.1,

• |ψ3⟩ = 0.(0⊕ f (0))− 0.(1⊕ f (0))︸ ︷︷ ︸
A

+1.(0⊕ f (1))− 1.(1⊕ f (1))︸ ︷︷ ︸
B

• A =

{
0.0− 0.1 if f (0) = 0

−(0.0− 0.1) if f (0) = 1
so A = (−1)f (0)(0.0− 0.1)

• |ψ3⟩ = (−1)f (0)(0.0− 0.1) + (−1)f (1)(1.0− 1.1)

10

Deutsch-Jozsa Quantum Circuit (n = 1)

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

|x⟩ |x⟩

|y⟩ |y ⊕ f (x)⟩
Of

• |ψ2⟩ = 0.0− 0.1 + 1.0− 1.1,

• |ψ3⟩ = 0.(0⊕ f (0))− 0.(1⊕ f (0))︸ ︷︷ ︸
A

+1.(0⊕ f (1))− 1.(1⊕ f (1))︸ ︷︷ ︸
B

• A = (−1)f (0)(0.0− 0.1) and B = (−1)f (1)(1.0− 1.1)

• |ψ3⟩ = (−1)f (0)(0.0− 0.1) + (−1)f (1)(1.0− 1.1)
10

Deutsch-Jozsa Quantum Circuit (n = 1)

•

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

• |ψ3⟩ = (−1)f (0)(0.0− 0.1) + (−1)f (1)(1.0− 1.1)

• |ψ4⟩ = (−1)f (0)((0+1).0−(0+1).1)+(−1)f (1)((0−1).0−(0−1).1)

• |ψ4⟩ = (−1)f (0)(0.0−0.1+1.0−1.1)+(−1)f (1)(0.0−0.1−1.0+1.1)

11

Deutsch-Jozsa Quantum Circuit (n = 1)

•

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

• |ψ4⟩ = (−1)f (0)(0.0−0.1+1.0−1.1)+(−1)f (1)(0.0−0.1−1.0+1.1)

• |ψ4⟩ = ((−1)f (0) + (−1)f (1))0.0 + (−(−1)f (0) − (−1)f (1))0.1 +

((−1)f (0) − (−1)f (1))1.0 + (−(−1)f (0) + (−1)f (1))1.1

• If f is constant, (−1)f (0) + (−1)f (1) = ±2 and

(−1)f (0) − (−1)f (1) = 0 and (−1)f (0) − (−1)f (1) = 0, so

|ψ4⟩ = 0.0− 0.1 the measure of the first qubit 0 in both cases

• If f is balanced, check that the first bit is 1

12

Deutsch-Jozsa Quantum Circuit (n = 1)

•

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

• |ψ4⟩ = (−1)f (0)(0.0−0.1+1.0−1.1)+(−1)f (1)(0.0−0.1−1.0+1.1)

• |ψ4⟩ = ((−1)f (0) + (−1)f (1))0.0 + (−(−1)f (0) − (−1)f (1))0.1 +

((−1)f (0) − (−1)f (1))1.0 + (−(−1)f (0) + (−1)f (1))1.1

• If f is constant, (−1)f (0) + (−1)f (1) = ±2 and

(−1)f (0) − (−1)f (1) = 0 and (−1)f (0) − (−1)f (1) = 0, so

|ψ4⟩ = 0.0− 0.1 the measure of the first qubit 0 in both cases

• If f is balanced, check that the first bit is 1

12

Deutsch-Jozsa Quantum Circuit (n = 1)

•

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

• |ψ4⟩ = (−1)f (0)(0.0−0.1+1.0−1.1)+(−1)f (1)(0.0−0.1−1.0+1.1)

• |ψ4⟩ = ((−1)f (0) + (−1)f (1))0.0 + (−(−1)f (0) − (−1)f (1))0.1 +

((−1)f (0) − (−1)f (1))1.0 + (−(−1)f (0) + (−1)f (1))1.1

• If f is constant, (−1)f (0) + (−1)f (1) = ±2 and

(−1)f (0) − (−1)f (1) = 0 and (−1)f (0) − (−1)f (1) = 0, so

|ψ4⟩ = 0.0− 0.1 the measure of the first qubit 0 in both cases

• If f is balanced, check that the first bit is 1

12

Deutsch-Jozsa Circuit for n = 2

|0⟩

|0⟩ |

|1⟩

H

Of

H

out

H H

H

|x⟩ |x⟩

|y⟩ |y⟩

|z⟩ |z ⊕ f (x , y)⟩

Of

• Check that if f is constant, the final state before the measurement is

± |0.0⟩
∣∣∣ 1√

2
(0− 1)

〉
, and the 2 first bits are 0.0

• if f is balanced, the final state does not contain qubits starting with

0.0, so no measurement of these qubits will give 0.0.
13

Simon algorithm

Problem
Let f : {0, 1}n → {0, 1}n a 2-to-1 function so that there exists

c ∈ {0, 1}n such that

f (x) = f (x ⊕ c), where ⊕ is bitwise exclusive or

Example

f(000) = 101 f(100) = 011

f(001) = 010 f(101) = 100

f(010) = 011 f(110) = 101

f(011) = 100 f(111) = 010

What is c ? c = 110

Classical algorithms

• Compute f (x) until a collision f (x1) = f (x2) ... and then c = x1⊕ x2

• Another solution: since f (000) ̸= f (001), c ̸= 001, ...

14

Simon algorithm

Problem
Let f : {0, 1}n → {0, 1}n a 2-to-1 function so that there exists

c ∈ {0, 1}n such that

f (x) = f (x ⊕ c), where ⊕ is bitwise exclusive or

Example

f(000) = 101 f(100) = 011

f(001) = 010 f(101) = 100

f(010) = 011 f(110) = 101

f(011) = 100 f(111) = 010

What is c ?

c = 110

Classical algorithms

• Compute f (x) until a collision f (x1) = f (x2) ... and then c = x1⊕ x2

• Another solution: since f (000) ̸= f (001), c ̸= 001, ...

14

Simon algorithm

Problem
Let f : {0, 1}n → {0, 1}n a 2-to-1 function so that there exists

c ∈ {0, 1}n such that

f (x) = f (x ⊕ c), where ⊕ is bitwise exclusive or

Example

f(000) = 101 f(100) = 011

f(001) = 010 f(101) = 100

f(010) = 011 f(110) = 101

f(011) = 100 f(111) = 010

What is c ? c = 110

Classical algorithms

• Compute f (x) until a collision f (x1) = f (x2) ... and then c = x1⊕ x2

• Another solution: since f (000) ̸= f (001), c ̸= 001, ...

14

Simon algorithm

Problem
Let f : {0, 1}n → {0, 1}n a 2-to-1 function so that there exists

c ∈ {0, 1}n such that

f (x) = f (x ⊕ c), where ⊕ is bitwise exclusive or

Example

f(000) = 101 f(100) = 011

f(001) = 010 f(101) = 100

f(010) = 011 f(110) = 101

f(011) = 100 f(111) = 010

What is c ? c = 110

Classical algorithms

• Compute f (x) until a collision f (x1) = f (x2) ... and then c = x1⊕ x2

• Another solution: since f (000) ̸= f (001), c ̸= 001, ...

14

Simon algorithm

Problem
Let f : {0, 1}n → {0, 1}n a 2-to-1 function so that there exists

c ∈ {0, 1}n such that

f (x) = f (x ⊕ c), where ⊕ is bitwise exclusive or

Example

f(000) = 101 f(100) = 011

f(001) = 010 f(101) = 100

f(010) = 011 f(110) = 101

f(011) = 100 f(111) = 010

What is c ? c = 110

Classical algorithms

• Compute f (x) until a collision f (x1) = f (x2) ... and then c = x1⊕ x2

• Another solution: since f (000) ̸= f (001), c ̸= 001, ...

14

Simon algorithm

Problem
Let f : {0, 1}n → {0, 1}n a 2-to-1 function so that there exists

c ∈ {0, 1}n such that

f (x) = f (x ⊕ c), where ⊕ is bitwise exclusive or

Example

f(000) = 101 f(100) = 011

f(001) = 010 f(101) = 100

f(010) = 011 f(110) = 101

f(011) = 100 f(111) = 010

What is c ? c = 110

Classical algorithms

• Compute f (x) until a collision f (x1) = f (x2) ... and then c = x1⊕ x2

• Another solution: since f (000) ̸= f (001), c ̸= 001, ... 14

Simon Quantum Algorithm

Hadamard Transform

• H⊗n
∣∣j〉 = 1

2n/2

∑2n−1
k=0 (−1)j·k |k⟩

• H⊗n |0⟩ = 1
2n/2

∑2n−1
k=0 |k⟩

Simon’s algorithm
Start with 2n qubits: |0⟩ |0⟩
Apply H⊗n

∑
x |x⟩ |0⟩

Apply Of

∑
x |x⟩

∣∣∣f (x)〉
Measure the second register

∣∣x0〉+ ∣∣x0 + s
〉

Apply H⊗n
∑

y ((−1)x0·y + (−1)(x0⊕s)·y)
∣∣y〉

=
∑

y (−1)x0·y · (1 + (−1)s·y)
∣∣y〉

Measure y such that 1 + (−1)s·y ̸= 0 iff s · y = 0

Post-processing

• With n − 1 values y1, . . . , yn−1 independent vectors, we obtain a

linear system to recover s

15

Simon Quantum Algorithm

Hadamard Transform

• H⊗n
∣∣j〉 = 1

2n/2

∑2n−1
k=0 (−1)j·k |k⟩

• H⊗n |0⟩ = 1
2n/2

∑2n−1
k=0 |k⟩

Simon’s algorithm
Start with 2n qubits: |0⟩ |0⟩
Apply H⊗n

∑
x |x⟩ |0⟩

Apply Of

∑
x |x⟩

∣∣∣f (x)〉
Measure the second register

∣∣x0〉+ ∣∣x0 + s
〉

Apply H⊗n
∑

y ((−1)x0·y + (−1)(x0⊕s)·y)
∣∣y〉

=
∑

y (−1)x0·y · (1 + (−1)s·y)
∣∣y〉

Measure y such that 1 + (−1)s·y ̸= 0 iff s · y = 0

Post-processing

• With n − 1 values y1, . . . , yn−1 independent vectors, we obtain a

linear system to recover s

15

Simon Quantum Algorithm

Hadamard Transform

• H⊗n
∣∣j〉 = 1

2n/2

∑2n−1
k=0 (−1)j·k |k⟩

• H⊗n |0⟩ = 1
2n/2

∑2n−1
k=0 |k⟩

Simon’s algorithm
Start with 2n qubits: |0⟩ |0⟩
Apply H⊗n

∑
x |x⟩ |0⟩

Apply Of

∑
x |x⟩

∣∣∣f (x)〉
Measure the second register

∣∣x0〉+ ∣∣x0 + s
〉

Apply H⊗n
∑

y ((−1)x0·y + (−1)(x0⊕s)·y)
∣∣y〉

=
∑

y (−1)x0·y · (1 + (−1)s·y)
∣∣y〉

Measure y such that 1 + (−1)s·y ̸= 0 iff s · y = 0

Post-processing

• With n − 1 values y1, . . . , yn−1 independent vectors, we obtain a

linear system to recover s
15

Application of Simon to Symmetric-key cryptanalysis

Figure 1: Even-Mansour: P public permutation on {0, 1}n with 2n-bit key

Goal: Recover the secret key (k1, k2)

• Classical: If P is random permutation, adversary T queries to P and

D to Ek1,k2 needs

T · D = 2n

• Quantum: Define f (x) = Ek1,k2(x)⊕ P(x) = P(x ⊕ k1)⊕ P(x)⊕ k2:

f (x ⊕ k1) = f (x)

• f one query to Ek1,k2 in superposition. Q2 model: Realistic model ?

16

Application of Simon to Symmetric-key cryptanalysis

Figure 1: Even-Mansour: P public permutation on {0, 1}n with 2n-bit key

Goal: Recover the secret key (k1, k2)

• Classical: If P is random permutation, adversary T queries to P and

D to Ek1,k2 needs

T · D = 2n

• Quantum: Define f (x) = Ek1,k2(x)⊕ P(x) = P(x ⊕ k1)⊕ P(x)⊕ k2:

f (x ⊕ k1) = f (x)

• f one query to Ek1,k2 in superposition. Q2 model: Realistic model ?

16

Application of Simon to Symmetric-key cryptanalysis

Figure 1: Even-Mansour: P public permutation on {0, 1}n with 2n-bit key

Goal: Recover the secret key (k1, k2)

• Classical: If P is random permutation, adversary T queries to P and

D to Ek1,k2 needs

T · D = 2n

• Quantum: Define f (x) = Ek1,k2(x)⊕ P(x) = P(x ⊕ k1)⊕ P(x)⊕ k2:

f (x ⊕ k1) = f (x)

• f one query to Ek1,k2 in superposition. Q2 model: Realistic model ?

16

Application of Simon to Symmetric-key cryptanalysis

Figure 1: Even-Mansour: P public permutation on {0, 1}n with 2n-bit key

Goal: Recover the secret key (k1, k2)

• Classical: If P is random permutation, adversary T queries to P and

D to Ek1,k2 needs

T · D = 2n

• Quantum: Define f (x) = Ek1,k2(x)⊕ P(x) = P(x ⊕ k1)⊕ P(x)⊕ k2:

f (x ⊕ k1) = f (x)

• f one query to Ek1,k2 in superposition. Q2 model: Realistic model ? 16

Shor Algorithm

Arithmetic

• Z/NZ is not an integral domain: N = 15, 5× 3 = 0 mod 15

• (Z/NZ)∗ multiplicative group of invertible elements, not cyclic !

• order of a: smallest positive integer r s.t. ar = 1 mod N

• r |φ(N) Lagrange Theorem in the group (Z/NZ)∗

• r is the smallest period of the function f : k 7→ ak mod N

Assumptions

1. Assumption 1: ord(a) = r is even with proba. 1/2

2. Fact: (ar/2 − 1)(ar/2 + 1) = 0 mod N

3. Assumption 2: ar/2 + 1 is not divisible by N for many a’s (CRT)

4. Under Assumption 1 and 2: d = gcd(ar/2 − 1,N) and

d ′ = gcd(ar/2 + 1,N) are non-trivial factors of N

a=2 (a,N) = 1 r = 4, 24 = 16 = 1 mod 15 (24/2 − 1, 15) = 3

a=3 no

a=11 (a,N) = 1 r = 2, 112 = 121 = 1 mod 15 (112/2 − 1, 15) = 5

17

Arithmetic

• (Z/NZ)∗ multiplicative group of invertible elements, not cyclic !

• order of a: smallest positive integer r s.t. ar = 1 mod N

• r |φ(N) Lagrange Theorem in the group (Z/NZ)∗

• r is the smallest period of the function f : k 7→ ak mod N

Assumptions

1. Assumption 1: ord(a) = r is even with proba. 1/2

2. Fact: (ar/2 − 1)(ar/2 + 1) = 0 mod N

3. Assumption 2: ar/2 + 1 is not divisible by N for many a’s (CRT)

4. Under Assumption 1 and 2: d = gcd(ar/2 − 1,N) and

d ′ = gcd(ar/2 + 1,N) are non-trivial factors of N

a=2 (a,N) = 1 r = 4, 24 = 16 = 1 mod 15 (24/2 − 1, 15) = 3

a=3 no

a=11 (a,N) = 1 r = 2, 112 = 121 = 1 mod 15 (112/2 − 1, 15) = 5

17

Arithmetic

• (Z/NZ)∗ multiplicative group of invertible elements, not cyclic !

• order of a: smallest positive integer r s.t. ar = 1 mod N

• r |φ(N) Lagrange Theorem in the group (Z/NZ)∗

• r is the smallest period of the function f : k 7→ ak mod N

Assumptions

1. Assumption 1: ord(a) = r is even with proba. 1/2

2. Fact: (ar/2 − 1)(ar/2 + 1) = 0 mod N

3. Assumption 2: ar/2 + 1 is not divisible by N for many a’s (CRT)

4. Under Assumption 1 and 2: d = gcd(ar/2 − 1,N) and

d ′ = gcd(ar/2 + 1,N) are non-trivial factors of N

a=2 (a,N) = 1 r = 4, 24 = 16 = 1 mod 15 (24/2 − 1, 15) = 3

a=3 no

a=11 (a,N) = 1 r = 2, 112 = 121 = 1 mod 15 (112/2 − 1, 15) = 5

17

Arithmetic

• (Z/NZ)∗ multiplicative group of invertible elements, not cyclic !

• order of a: smallest positive integer r s.t. ar = 1 mod N

• r |φ(N) Lagrange Theorem in the group (Z/NZ)∗

• r is the smallest period of the function f : k 7→ ak mod N

Assumptions

1. Assumption 1: ord(a) = r is even with proba. 1/2

2. Fact: (ar/2 − 1)(ar/2 + 1) = 0 mod N

3. Assumption 2: ar/2 + 1 is not divisible by N for many a’s (CRT)

4. Under Assumption 1 and 2: d = gcd(ar/2 − 1,N) and

d ′ = gcd(ar/2 + 1,N) are non-trivial factors of N

a=2 (a,N) = 1 r = 4, 24 = 16 = 1 mod 15 (24/2 − 1, 15) = 3

a=3 no

a=11 (a,N) = 1 r = 2, 112 = 121 = 1 mod 15 (112/2 − 1, 15) = 5 17

Order and Oracle

• order of a: smallest positive integer r s.t. ar = 1 mod N

• r |φ(N) Lagrange Theorem in the group (Z/NZ)∗

• r is the smallest period of the function f : k 7→ ak mod N

• Oracle F : (k, 0) 7→ (k , ak mod N)

• E.g. N = 15 and a = 2, r = 4

(0, 0)
F7→ (0, 1) (4, 0)

F7→ (4, 1) (8, 0)
F7→ (8, 1) (12, 0)

F7→ (12, 1)

(1, 0)
F7→ (1, 2) (5, 0)

F7→ (5, 2) (9, 0)
F7→ (9, 2) (13, 0)

F7→ (13, 2)

(2, 0)
F7→ (2, 4) (6, 0)

F7→ (6, 4) (10, 0)
F7→ (10, 4) (14, 0)

F7→ (14, 4)

(3, 0)
F7→ (3, 8) (7, 0)

F7→ (7, 8) (11, 0)
F7→ (11, 8) (15, 0)

F7→ (15, 8)

18

Order and Oracle

• order of a: smallest positive integer r s.t. ar = 1 mod N

• r |φ(N) Lagrange Theorem in the group (Z/NZ)∗

• r is the smallest period of the function f : k 7→ ak mod N

• Oracle F : (k, 0) 7→ (k , ak mod N)

• E.g. N = 15 and a = 2, r = 4

(0, 0)
F7→ (0, 1) (4, 0)

F7→ (4, 1) (8, 0)
F7→ (8, 1) (12, 0)

F7→ (12, 1)

(1, 0)
F7→ (1, 2) (5, 0)

F7→ (5, 2) (9, 0)
F7→ (9, 2) (13, 0)

F7→ (13, 2)

(2, 0)
F7→ (2, 4) (6, 0)

F7→ (6, 4) (10, 0)
F7→ (10, 4) (14, 0)

F7→ (14, 4)

(3, 0)
F7→ (3, 8) (7, 0)

F7→ (7, 8) (11, 0)
F7→ (11, 8) (15, 0)

F7→ (15, 8)

18

Oracle Circuit 2n ≥ N

The oracle is composed of 2 registers: the first receives the integer k in

binary with n bits, and the second, 0 on n bits. We write |k⟩ the register

containing k written in binary. For instance, |0⟩ = |0. . . . 0⟩ with n bits.

The initial state is |k⟩ ⊗ |0⟩.

•

k0 k0

...
...

kn−1 kn−1

0

...
...

0

First register k

Of

k

Second register ak mod N

19

Starting the Circuit 2n ≥ N

• Initialization: |ψ0⟩ = |0⟩ ⊗ |0⟩.
• Hadamard: |ψ1⟩ = H⊗n(|0⟩)⊗ |0⟩ =

(
1√
2n

∑2n−1
k=0 |k⟩

)
⊗ |0⟩

• Oracle: |ψ2⟩ = 1
2n/2

∑2n−1
k=0 |k⟩ ⊗

∣∣ak〉
|0⟩

...
...

|0⟩

|0⟩

...

|0⟩

First register

H

Of

∣∣ψ̄3

〉
after partial

measurement

H

Second register
measure of the

second register

ψ0 ψ1 ψ2

20

Using the period to rewrite |ψ2⟩

• Assumption 3: ord(a) = r |2n. This assumption is not true, and can

be removed (see later)

• Under Assumption 3: k = αr + β with 0 ≤ β < r and 0 ≤ α < 2n/r ,

|ψ2⟩ =
2n−1∑
k=0

|k⟩ ⊗
∣∣ak〉 = r−1∑

β=0

(
2n/r−1∑
α=0

∣∣αr + β
〉)

⊗
∣∣aβ〉

• If we measure the second register, we get for a fixed β0,

|ψ3⟩ =
2n/r−1∑
α=0

|αr + β0⟩ ⊗
∣∣aβ0

〉
• Assume we measure the first register, |α0r + β0⟩ for fixed α0 and β0

• If we redo the computation, we will not the same β0,

• We cannot do many measures of the first register ...

21

Using the period to rewrite |ψ2⟩

• Assumption 3: ord(a) = r |2n. This assumption is not true, and can

be removed (see later)

• Under Assumption 3: k = αr + β with 0 ≤ β < r and 0 ≤ α < 2n/r ,

|ψ2⟩ =
2n−1∑
k=0

|k⟩ ⊗
∣∣ak〉 = r−1∑

β=0

(
2n/r−1∑
α=0

∣∣αr + β
〉)

⊗
∣∣aβ〉

• If we measure the second register, we get for a fixed β0,

|ψ3⟩ =
2n/r−1∑
α=0

|αr + β0⟩ ⊗
∣∣aβ0

〉

• Assume we measure the first register, |α0r + β0⟩ for fixed α0 and β0

• If we redo the computation, we will not the same β0,

• We cannot do many measures of the first register ...

21

Using the period to rewrite |ψ2⟩

• Assumption 3: ord(a) = r |2n. This assumption is not true, and can

be removed (see later)

• Under Assumption 3: k = αr + β with 0 ≤ β < r and 0 ≤ α < 2n/r ,

|ψ2⟩ =
2n−1∑
k=0

|k⟩ ⊗
∣∣ak〉 = r−1∑

β=0

(
2n/r−1∑
α=0

∣∣αr + β
〉)

⊗
∣∣aβ〉

• If we measure the second register, we get for a fixed β0,

|ψ3⟩ =
2n/r−1∑
α=0

|αr + β0⟩ ⊗
∣∣aβ0

〉
• Assume we measure the first register, |α0r + β0⟩ for fixed α0 and β0

• If we redo the computation, we will not the same β0,

• We cannot do many measures of the first register ...

21

Example N = 15, a = 2

• |ψ0⟩ = |0⟩ ⊗ |0⟩
• Hadamard Transform: |ψ1⟩ = (|0⟩+ |1⟩+ . . .+ |15⟩)⊗ |0⟩
• Oracle: |ψ2⟩ = |0⟩ .

∣∣a0〉+ |1⟩ .
∣∣a1〉+ . . .+ |15⟩ .

∣∣a15〉

• Since r = 4|24 = 16, the values form a rectangular table

|ψ2⟩ =
(
|0⟩+ |4⟩+ |8⟩+ |12⟩

)
. |1⟩+(

|1⟩+ |5⟩+ |9⟩+ |13⟩
)
. |2⟩+(

|2⟩+ |6⟩+ |10⟩+ |14⟩
)
. |4⟩+(

|3⟩+ |7⟩+ |11⟩+ |15⟩
)
. |8⟩

• If we measure the second register, |4⟩, the first register is∣∣∣ψ̃3

〉
= |2⟩+ |6⟩+ |10⟩+ |14⟩

• They are separated by the period r = 4, but how can we recover r ?

22

Example N = 15, a = 2

• |ψ0⟩ = |0⟩ ⊗ |0⟩
• Hadamard Transform: |ψ1⟩ = (|0⟩+ |1⟩+ . . .+ |15⟩)⊗ |0⟩
• Oracle: |ψ2⟩ = |0⟩ .

∣∣a0〉+ |1⟩ .
∣∣a1〉+ . . .+ |15⟩ .

∣∣a15〉
• Since r = 4|24 = 16, the values form a rectangular table

|ψ2⟩ =
(
|0⟩+ |4⟩+ |8⟩+ |12⟩

)
. |1⟩+(

|1⟩+ |5⟩+ |9⟩+ |13⟩
)
. |2⟩+(

|2⟩+ |6⟩+ |10⟩+ |14⟩
)
. |4⟩+(

|3⟩+ |7⟩+ |11⟩+ |15⟩
)
. |8⟩

• If we measure the second register, |4⟩, the first register is∣∣∣ψ̃3

〉
= |2⟩+ |6⟩+ |10⟩+ |14⟩

• They are separated by the period r = 4, but how can we recover r ?
22

Discrete Fourier Transform

Complex numbers

•

1 + z + . . .+ zn−1 =

{
n if z = 1
1−zn

1−z otherwise.

• Crucial Lemma: n > 0, j ∈ Z,

1

n

n−1∑
k=0

e2iπ
kj
n =

{
1 if j

n is an integer

0 otherwise.

Discrete Fourier Transform and Inverse

F̂ |k⟩ = 1√
2n

2n−1∑
j=0

e2iπ
kj
2n
∣∣j〉 and F̂−1 |k⟩ = 1√

2n

2n−1∑
j=0

e−2iπ kj
2n
∣∣j〉

The Discrete Fourier Transform is Linear and Unitary

If |ψ⟩ =
2n−1∑
k=0

αk |k⟩ , then F̂ |ψ⟩ =
2n−1∑
k=0

αk F̂ |k⟩

23

Discrete Fourier Transform

Complex numbers

•

1 + z + . . .+ zn−1 =

{
n if z = 1
1−zn

1−z otherwise.

• Crucial Lemma: n > 0, j ∈ Z,

1

n

n−1∑
k=0

e2iπ
kj
n =

{
1 if j

n is an integer

0 otherwise.

Discrete Fourier Transform and Inverse

F̂ |k⟩ = 1√
2n

2n−1∑
j=0

e2iπ
kj
2n
∣∣j〉 and F̂−1 |k⟩ = 1√

2n

2n−1∑
j=0

e−2iπ kj
2n
∣∣j〉

The Discrete Fourier Transform is Linear and Unitary

If |ψ⟩ =
2n−1∑
k=0

αk |k⟩ , then F̂ |ψ⟩ =
2n−1∑
k=0

αk F̂ |k⟩

23

Discrete Fourier Transform

Complex numbers

•

1 + z + . . .+ zn−1 =

{
n if z = 1
1−zn

1−z otherwise.

• Crucial Lemma: n > 0, j ∈ Z,

1

n

n−1∑
k=0

e2iπ
kj
n =

{
1 if j

n is an integer

0 otherwise.

Discrete Fourier Transform and Inverse

F̂ |k⟩ = 1√
2n

2n−1∑
j=0

e2iπ
kj
2n
∣∣j〉 and F̂−1 |k⟩ = 1√

2n

2n−1∑
j=0

e−2iπ kj
2n
∣∣j〉

The Discrete Fourier Transform is Linear and Unitary

If |ψ⟩ =
2n−1∑
k=0

αk |k⟩ , then F̂ |ψ⟩ =
2n−1∑
k=0

αk F̂ |k⟩
23

Shor Circuit

• Initialization: |ψ0⟩ = |0⟩ ⊗ |0⟩.

• Hadamard: |ψ1⟩ = H⊗n(|0⟩)⊗ |0⟩ =
(

1√
2n

∑2n−1
k=0 |k⟩

)
⊗ |0⟩

• Oracle: |ψ2⟩ = 1
2n/2

∑2n−1
k=0 |k⟩ ⊗

∣∣ak〉
n n n

n n n

|0⟩

|0⟩

H⊗n

Of

F̂−1

• Measure of the first register:
∣∣∣ 2nℓr 〉

• Allows (often) to get r (or a factor of r)

24

Computation

• After measuring the second register
∣∣ψ̄3

〉
=
∑2n/r−1

α=0

∣∣αr + β0
〉

• Action of F̂−1:

∣∣ψ̄4

〉
= F̂−1

∣∣∣ψ̂3

〉
=

2n/r−1∑
α=0

F̂−1
∣∣αr + β0

〉

=
∑
α

2n−1∑
j=0

e−
2iπ(αr+β0)j

2n
∣∣j〉 =∑

j

0 or 1︷ ︸︸ ︷(∑
α

e−2iπ αj
2n/r

)
e−2iπ

β0 j
2n
∣∣j〉

=
∑

j with j/(2n/r) integer

e−2iπ
β0 j
2n |j⟩ =

r−1∑
ℓ=0

e−2iπβ0
ℓ
r

∣∣∣∣2nℓr
〉

• Measure the first register:
∣∣∣ 2nℓr 〉, for ℓ ∈ {0, 1, . . . , r − 1}

• We get m = 2nℓ
r for one of the states

∣∣∣ 2nℓr 〉

25

Computation

• After measuring the second register
∣∣ψ̄3

〉
=
∑2n/r−1

α=0

∣∣αr + β0
〉

• Action of F̂−1:

∣∣ψ̄4

〉
= F̂−1

∣∣∣ψ̂3

〉
=

2n/r−1∑
α=0

F̂−1
∣∣αr + β0

〉

=
∑
α

2n−1∑
j=0

e−
2iπ(αr+β0)j

2n
∣∣j〉 =∑

j

0 or 1︷ ︸︸ ︷(∑
α

e−2iπ αj
2n/r

)
e−2iπ

β0 j
2n
∣∣j〉

=
∑

j with j/(2n/r) integer

e−2iπ
β0 j
2n |j⟩ =

r−1∑
ℓ=0

e−2iπβ0
ℓ
r

∣∣∣∣2nℓr
〉

• Measure the first register:
∣∣∣ 2nℓr 〉, for ℓ ∈ {0, 1, . . . , r − 1}

• We get m = 2nℓ
r for one of the states

∣∣∣ 2nℓr 〉

25

Computation

• After measuring the second register
∣∣ψ̄3

〉
=
∑2n/r−1

α=0

∣∣αr + β0
〉

• Action of F̂−1:

∣∣ψ̄4

〉
= F̂−1

∣∣∣ψ̂3

〉
=

2n/r−1∑
α=0

F̂−1
∣∣αr + β0

〉

=
∑
α

2n−1∑
j=0

e−
2iπ(αr+β0)j

2n
∣∣j〉 =∑

j

0 or 1︷ ︸︸ ︷(∑
α

e−2iπ αj
2n/r

)
e−2iπ

β0 j
2n
∣∣j〉

=
∑

j with j/(2n/r) integer

e−2iπ
β0 j
2n |j⟩ =

r−1∑
ℓ=0

e−2iπβ0
ℓ
r

∣∣∣∣2nℓr
〉

• Measure the first register:
∣∣∣ 2nℓr 〉, for ℓ ∈ {0, 1, . . . , r − 1}

• We get m = 2nℓ
r for one of the states

∣∣∣ 2nℓr 〉 25

Measure the first register

m = 2nℓ
r integer with n known and ℓ unknown

• Divide m by 2n to obtain the rational x = m
2n = ℓ

r

• If x ∈ Z, we get no information on r , and we redo the quantum

circuit

• If gcd(ℓ, r) = 1, then ℓ
r is irreducible and we get r .

• If gcd(ℓ, r) ̸= 1, then x = m
2n = ℓ′

r ′ =
ℓ
r and we get r ′ a factor of r .

We redo the computation with a′ = ar
′
which is of period r/r ′.

26

Implementation of the oracle

Reduce exponentiation to controlled multi-product modulo N:

f (x) = ax =
∏
i

(
a2

i)xi =∏
i

(
ai
)xi mod N, where ai = a2

i

mod N

The constants ai are precomputed:

• Asymptotic best: O(n × (n log n)) operations

• Typical: O(n × (n2)) operations

27

Continued Fractions

Definition

• a0 +
1

a1+
1

a2+
1

...+ 1
an

, noted [a0, a1, . . . , an]

• E.g., [5, 2, 1, 4] = 5 + 1
2+ 1

1+ 1
4

= 5.3571428 . . .

• [5] = 5, [5, 2] = 11
2 = 5.5, [5, 2, 1] = 16

3 = 5.33 . . .

Good Approximation by continued fractions

• π = 3.14159 . . . ≈ 314
100 (denominator is large)

• 314
100 = 3 + 14

100 = 3 + 1
100
14

= 3 + 1
7+ 2

14

= 3 + 1
7+ 1

7

= [3, 7, 7]

• [3, 7] = 3 + 1
7 = 22

7 = 3.1428

• [3, 7, 15, 1] = 355
113 = 3.14159292 . . . (same order with 6 exact values

instead of 2)

28

Continued Fractions

Definition

• a0 +
1

a1+
1

a2+
1

...+ 1
an

, noted [a0, a1, . . . , an]

• E.g., [5, 2, 1, 4] = 5 + 1
2+ 1

1+ 1
4

= 5.3571428 . . .

• [5] = 5, [5, 2] = 11
2 = 5.5, [5, 2, 1] = 16

3 = 5.33 . . .

Good Approximation by continued fractions

• π = 3.14159 . . . ≈ 314
100 (denominator is large)

• 314
100 = 3 + 14

100 = 3 + 1
100
14

= 3 + 1
7+ 2

14

= 3 + 1
7+ 1

7

= [3, 7, 7]

• [3, 7] = 3 + 1
7 = 22

7 = 3.1428

• [3, 7, 15, 1] = 355
113 = 3.14159292 . . . (same order with 6 exact values

instead of 2)

28

Example Shor with N = 21

• N = 21, a = 2, 2n = 512 = 29

• Circuit outputs |427⟩, so x = 427
512

• 427
512 ≈ 4

5 so order 5 ??

• 427
512 = [0, 1, 5, 42, 2] and [0, 1] = 1, [0, 1, 5] = 5

6 , [0, 1, 5, 42] =
211
253

• We keep the best fraction whose denominator is ≤ N and it gives r

or a fraction of r

Shor algorithm with arbitrary order

• N = 21, a = 2, 2n = 512 = 29 ≥ N2

• |ψ0⟩ = |0⟩ ⊗ |0⟩
• |ψ1⟩ =

∑r−1
k=0 |k⟩ ⊗ |0⟩

• |ψ2⟩ =
∑r−1

k=0 |k⟩ ⊗
∣∣ak mod N

〉
• r = 6 and 2nℓ

r ̸∈ Z

29

Example Shor with N = 21

• N = 21, a = 2, 2n = 512 = 29

• Circuit outputs |427⟩, so x = 427
512

• 427
512 ≈ 4

5 so order 5 ??

• 427
512 = [0, 1, 5, 42, 2] and [0, 1] = 1, [0, 1, 5] = 5

6 , [0, 1, 5, 42] =
211
253

• We keep the best fraction whose denominator is ≤ N and it gives r

or a fraction of r

Shor algorithm with arbitrary order

• N = 21, a = 2, 2n = 512 = 29 ≥ N2

• |ψ0⟩ = |0⟩ ⊗ |0⟩
• |ψ1⟩ =

∑r−1
k=0 |k⟩ ⊗ |0⟩

• |ψ2⟩ =
∑r−1

k=0 |k⟩ ⊗
∣∣ak mod N

〉
• r = 6 and 2nℓ

r ̸∈ Z
29

Example

The first two lines have 86 terms and 85 in the others

• The state |ψ2⟩ is not rectangular:

|ψ2⟩ =
1√
512

(|0⟩+ |6⟩+ . . .+ |504⟩+ |510⟩) |1⟩

+
1√
512

(|1⟩+ |7⟩+ . . .+ |505⟩+ |511⟩) |2⟩

+
1√
512

(|2⟩+ |8⟩+ . . .+ |506⟩) |4⟩

+ . . .

+
1√
512

(|5⟩+ |11⟩+ . . .+ |509⟩) |11⟩

• measure the second register |2⟩: |ψ3⟩ = |1⟩+ |7⟩+ . . .+ |511⟩
• |ψ4⟩ = F̂−1 |ψ3⟩ =

∑85
α=0 F̂

−1 |6α+ 1⟩

• |ψ4⟩ =
∑511

j=0

(∑85
α=0 e

−2iπ 6αj
512

)
e−2iπ j

512

∣∣j〉

30

Example

The first two lines have 86 terms and 85 in the others

• The state |ψ2⟩ is not rectangular:

|ψ2⟩ =
1√
512

(|0⟩+ |6⟩+ . . .+ |504⟩+ |510⟩) |1⟩

+
1√
512

(|1⟩+ |7⟩+ . . .+ |505⟩+ |511⟩) |2⟩

+
1√
512

(|2⟩+ |8⟩+ . . .+ |506⟩) |4⟩

+ . . .

+
1√
512

(|5⟩+ |11⟩+ . . .+ |509⟩) |11⟩

• measure the second register |2⟩: |ψ3⟩ = |1⟩+ |7⟩+ . . .+ |511⟩
• |ψ4⟩ = F̂−1 |ψ3⟩ =

∑85
α=0 F̂

−1 |6α+ 1⟩

• |ψ4⟩ =
∑511

j=0

(∑85
α=0 e

−2iπ 6αj
512

)
e−2iπ j

512

∣∣j〉 30

Example Shor with arbitrary order

|ψ4⟩ = 1√
512

∑511
j=0

(
1√
86

∑85
α=0 e

−2iπ 6αj
512

)
e−2iπ j

512

∣∣j〉
Now, Σ(j) = 1√

86

∑85
α=0 e

−2iπ 6αj
512 does not take only 0 /1 values.

If we measure the first register, we get |j⟩ with probability |Σ(j)|2.

The proba. are ≈ 0, except when j ≈ 2nℓ
r : for ℓ = 5, 512×5

6 = 426.66.

31

Example Shor with arbitrary order

|ψ4⟩ = 1√
512

∑511
j=0

(
1√
86

∑85
α=0 e

−2iπ 6αj
512

)
e−2iπ j

512

∣∣j〉
Now, Σ(j) = 1√

86

∑85
α=0 e

−2iπ 6αj
512 does not take only 0 /1 values.

If we measure the first register, we get |j⟩ with probability |Σ(j)|2.

The proba. are ≈ 0, except when j ≈ 2nℓ
r : for ℓ = 5, 512×5

6 = 426.66.

31

Hardy-Wright Theorem

Theorem
Let x ∈ R and a rational p

q such that

∣∣x − p

q

∣∣ < 1

2q2
.

Then, p
q is obtained as one of the continued fractions of x .

Let m the closest integer to 2nℓ
r . So, |m − 2nℓ

r | < 1
2 .

If x = m
2n , we get |x − ℓ

r | <
1

2n+1 .

As we set 2n ≥ N2 ≥ r2, |x − ℓ
r | <

1
2r2 .

Using Theorem, we obtain ℓ
r as one of the continued fractions of x .

32

Hardy-Wright Theorem

Theorem
Let x ∈ R and a rational p

q such that

∣∣x − p

q

∣∣ < 1

2q2
.

Then, p
q is obtained as one of the continued fractions of x .

Let m the closest integer to 2nℓ
r . So, |m − 2nℓ

r | < 1
2 .

If x = m
2n , we get |x − ℓ

r | <
1

2n+1 .

As we set 2n ≥ N2 ≥ r2, |x − ℓ
r | <

1
2r2 .

Using Theorem, we obtain ℓ
r as one of the continued fractions of x .

32

Conclusion

Generalization

• HSP (Hidden Subgroup Problem): Let G a group and H a

subgroup. The function f is constant on each coset of H, find H

• Shor and Simon algorithms: special case of HSP

• Kitaev: any Abelian Group G

• Non-abelian: Kuperberg subexponential algo. for Dihedral HSP

• LWE (learning with errors problems) can be reduced to (stronger

version) Dihedral HSP (with errors)

33

Conclusion

Generalization

• HSP (Hidden Subgroup Problem): Let G a group and H a

subgroup. The function f is constant on each coset of H, find H

• Shor and Simon algorithms: special case of HSP

• Kitaev: any Abelian Group G

• Non-abelian: Kuperberg subexponential algo. for Dihedral HSP

• LWE (learning with errors problems) can be reduced to (stronger

version) Dihedral HSP (with errors)

33

Conclusion

Generalization

• HSP (Hidden Subgroup Problem): Let G a group and H a

subgroup. The function f is constant on each coset of H, find H

• Shor and Simon algorithms: special case of HSP

• Kitaev: any Abelian Group G

• Non-abelian: Kuperberg subexponential algo. for Dihedral HSP

• LWE (learning with errors problems) can be reduced to (stronger

version) Dihedral HSP (with errors)

33

Conclusion

Generalization

• HSP (Hidden Subgroup Problem): Let G a group and H a

subgroup. The function f is constant on each coset of H, find H

• Shor and Simon algorithms: special case of HSP

• Kitaev: any Abelian Group G

• Non-abelian: Kuperberg subexponential algo. for Dihedral HSP

• LWE (learning with errors problems) can be reduced to (stronger

version) Dihedral HSP (with errors)

33

Conclusion

Generalization

• HSP (Hidden Subgroup Problem): Let G a group and H a

subgroup. The function f is constant on each coset of H, find H

• Shor and Simon algorithms: special case of HSP

• Kitaev: any Abelian Group G

• Non-abelian: Kuperberg subexponential algo. for Dihedral HSP

• LWE (learning with errors problems) can be reduced to (stronger

version) Dihedral HSP (with errors)

33

Conclusion

Generalization

• HSP (Hidden Subgroup Problem): Let G a group and H a

subgroup. The function f is constant on each coset of H, find H

• Shor and Simon algorithms: special case of HSP

• Kitaev: any Abelian Group G

• Non-abelian: Kuperberg subexponential algo. for Dihedral HSP

• LWE (learning with errors problems) can be reduced to (stronger

version) Dihedral HSP (with errors)

33

Conclusion

New Results on factorization

• Shor algorithm: 3n qubits and O(n2) gates

• Regev algorithm: O(n3/2) qubits and O(n3/2) gates, runs n1/2

• Ragavan-Vaikuntanathan: 10n qubits and O(n3/2) gates, runs n1/2

• n/2 + o(n) qubits and O(n2) gates, runs constants [CFS24]

34

Conclusion

New Results on factorization

• Shor algorithm: 3n qubits and O(n2) gates

• Regev algorithm: O(n3/2) qubits and O(n3/2) gates, runs n1/2

• Ragavan-Vaikuntanathan: 10n qubits and O(n3/2) gates, runs n1/2

• n/2 + o(n) qubits and O(n2) gates, runs constants [CFS24]

34

Conclusion

New Results on factorization

• Shor algorithm: 3n qubits and O(n2) gates

• Regev algorithm: O(n3/2) qubits and O(n3/2) gates, runs n1/2

• Ragavan-Vaikuntanathan: 10n qubits and O(n3/2) gates, runs n1/2

• n/2 + o(n) qubits and O(n2) gates, runs constants [CFS24]

34

Conclusion

New Results on factorization

• Shor algorithm: 3n qubits and O(n2) gates

• Regev algorithm: O(n3/2) qubits and O(n3/2) gates, runs n1/2

• Ragavan-Vaikuntanathan: 10n qubits and O(n3/2) gates, runs n1/2

• n/2 + o(n) qubits and O(n2) gates, runs constants [CFS24]

34

Regev Quantum factorisation

algorithm: reducing the circuit

size by
√
n

Regev’s algorithm: idea

• Shor algorithm: compute 4z mod N - order (4 mod 8051) = 984

35

Regev’s algorithm: idea

• Shor algorithm: compute 4z mod N - order (4 mod 8051) = 984

• Use the period to factorize: 2984 = 1163 mod 8051

35

Regev’s algorithm: idea

• Shor algorithm: compute 4z mod N - order (4 mod 8051) = 984

• Use the period to factorize: 2984 = 1163 mod 8051

• (1163− 1)(1163 + 1) = 0 mod 8051

35

Regev’s algorithm: idea

• Shor algorithm: compute 4z mod N - order (4 mod 8051) = 984

• Use the period to factorize: 2984 = 1163 mod 8051

• (1163− 1)(1163 + 1) = 0 mod 8051

• gcd(1162, 8051) = 83 and 8051 = 83× 97 !

35

Regev’s algorithm: idea

• Shor algorithm: compute 4z mod N - order (4 mod 8051) = 984

• Regev algorithm: 4z19z2 mod N - order ? (27,15) much shorter !

35

Regev’s algorithm: idea

• Shor algorithm: compute 4z mod N - order (4 mod 8051) = 984

• Regev algorithm: 4z19z2 mod N - order ? (27,15) much shorter !

• does not work because 227 · 315 = −1 mod 8051...

35

Regev’s algorithm: idea

• Shor algorithm: compute 4z mod N - order (4 mod 8051) = 984

• Regev algorithm: 4z19z2 mod N - order ? (27,15) much shorter !

• does not work because 227 · 315 = −1 mod 8051...

• (19, 47): also Period. 219 · 347 = 6888 mod 8051 non-trivial square

root of unity

• gcd(6887, 8051) = 97

35

Regev’s algorithm: number of gates (1/2)

Hadamard and FFT are free, but oracle function...
The most expensive step is the function evaluation

(z1, . . . , zd) 7→
d∏

i=1

azii mod N

In dimension d , we only have to raise to power 2n/d to see the

period

• so each exponentiation requires only n/d multiplications (pigeonhole

principle)

• but, we have to do it d times, do we gain something

36

Regev’s algorithm: number of gates (1/2)

Hadamard and FFT are free, but oracle function...
The most expensive step is the function evaluation

(z1, . . . , zd) 7→
d∏

i=1

azii mod N

In dimension d , we only have to raise to power 2n/d to see the

period

• so each exponentiation requires only n/d multiplications (pigeonhole

principle)

• but, we have to do it d times, do we gain something

36

Regev’s algorithm: number of gates (1/2)

Hadamard and FFT are free, but oracle function...
The most expensive step is the function evaluation

(z1, . . . , zd) 7→
d∏

i=1

azii mod N

In dimension d , we only have to raise to power 2n/d to see the

period

• so each exponentiation requires only n/d multiplications (pigeonhole

principle)

• but, we have to do it d times, do we gain something

36

Regev’s algorithm: number of gates (1/2)

Hadamard and FFT are free, but oracle function...
The most expensive step is the function evaluation

(z1, . . . , zd) 7→
d∏

i=1

azii mod N

In dimension d , we only have to raise to power 2n/d to see the

period

• so each exponentiation requires only n/d multiplications (pigeonhole

principle)

• but, we have to do it d times, do we gain something

36

Regev’s algorithm: number of gates (2/2)

The trick is to choose a1, . . . , ad as small numbers

• E.g., they can be the squares of the first d primes (4,9,25,49,...)

• To get a1a2a3a4a5a6a7a8: ((a1a2)(a3a4))((a5a6)(a7a8))

• Then, we can compute
∏d

i=1 a
zi
i mod N with exponents zi up to 2n/d

using only n/d big number multiplications, requiring Õ(n2/d) gates

• To get a131 a92a
3
3a

6
4: from 1 = a01a

0
2a

0
3a

0
4,

• a11a
1
2a

0
3a

0
4 multiply by a1a2

• a21a
2
2a

0
3a

0
4 square

• a33a
2
2a

0
3a

1
4 multiply by a1a4

• a63a
4
2a

0
3a

2
4 square

• a63a
4
2a

1
3a

3
4 multiply by a3a4

• a123 a82a
2
3a

6
4 square

• a133 a92a
3
3a

6
4 multiply by a1a2a3

37

Final algorithm

To recover the period, we need a generalization of continued

fractions which is LLL for lattice

• We need d vectors (≈ Simon’s post-processing step)

• LLL has an approximation factor 2d , exponent larger: 2n/d+d

• optimal choice: d =
√
n, ⇒ Õ(n3/2) and run the circuit n1/2 times

Algorithm

1. Choose a1, . . . , ad squares of the first d =
√
n primes 4, 9, 25, 49, . . .

2. Apply the following quantum circuit d times:

(i) Compute
∏d

i=1 a
zi
i mod N in superposition over all

(z1, . . . , zd) ∈
(
0, . . . , 2n/d+d

)d
(ii) Apply QFT and measure to get an approximate dual lattice vector

3. Use the lattice algorithm LLL to recover the period (z1, . . . , zd)

4. Use the period to factor N

38

Final algorithm

To recover the period, we need a generalization of continued

fractions which is LLL for lattice

• We need d vectors (≈ Simon’s post-processing step)

• LLL has an approximation factor 2d , exponent larger: 2n/d+d

• optimal choice: d =
√
n, ⇒ Õ(n3/2) and run the circuit n1/2 times

Algorithm

1. Choose a1, . . . , ad squares of the first d =
√
n primes 4, 9, 25, 49, . . .

2. Apply the following quantum circuit d times:

(i) Compute
∏d

i=1 a
zi
i mod N in superposition over all

(z1, . . . , zd) ∈
(
0, . . . , 2n/d+d

)d
(ii) Apply QFT and measure to get an approximate dual lattice vector

3. Use the lattice algorithm LLL to recover the period (z1, . . . , zd)

4. Use the period to factor N

38

Final algorithm

To recover the period, we need a generalization of continued

fractions which is LLL for lattice

• We need d vectors (≈ Simon’s post-processing step)

• LLL has an approximation factor 2d , exponent larger: 2n/d+d

• optimal choice: d =
√
n, ⇒ Õ(n3/2) and run the circuit n1/2 times

Algorithm

1. Choose a1, . . . , ad squares of the first d =
√
n primes 4, 9, 25, 49, . . .

2. Apply the following quantum circuit d times:

(i) Compute
∏d

i=1 a
zi
i mod N in superposition over all

(z1, . . . , zd) ∈
(
0, . . . , 2n/d+d

)d
(ii) Apply QFT and measure to get an approximate dual lattice vector

3. Use the lattice algorithm LLL to recover the period (z1, . . . , zd)

4. Use the period to factor N

38

Final algorithm

To recover the period, we need a generalization of continued

fractions which is LLL for lattice

• We need d vectors (≈ Simon’s post-processing step)

• LLL has an approximation factor 2d , exponent larger: 2n/d+d

• optimal choice: d =
√
n, ⇒ Õ(n3/2) and run the circuit n1/2 times

Algorithm

1. Choose a1, . . . , ad squares of the first d =
√
n primes 4, 9, 25, 49, . . .

2. Apply the following quantum circuit d times:

(i) Compute
∏d

i=1 a
zi
i mod N in superposition over all

(z1, . . . , zd) ∈
(
0, . . . , 2n/d+d

)d
(ii) Apply QFT and measure to get an approximate dual lattice vector

3. Use the lattice algorithm LLL to recover the period (z1, . . . , zd)

4. Use the period to factor N

38

Final algorithm

To recover the period, we need a generalization of continued

fractions which is LLL for lattice

• We need d vectors (≈ Simon’s post-processing step)

• LLL has an approximation factor 2d , exponent larger: 2n/d+d

• optimal choice: d =
√
n, ⇒ Õ(n3/2) and run the circuit n1/2 times

Algorithm

1. Choose a1, . . . , ad squares of the first d =
√
n primes 4, 9, 25, 49, . . .

2. Apply the following quantum circuit d times:

(i) Compute
∏d

i=1 a
zi
i mod N in superposition over all

(z1, . . . , zd) ∈
(
0, . . . , 2n/d+d

)d
(ii) Apply QFT and measure to get an approximate dual lattice vector

3. Use the lattice algorithm LLL to recover the period (z1, . . . , zd)

4. Use the period to factor N

38

Ragavan and Vaikuntanathan variant

Solve 2 drawbacks of Regev’s algorithm

1. Number of qubits: O(n log n) ⇒ 10n: avoid the squaring (not

reversible !) while modular multiplications are

• Fibonacci representation: every number can be written as
∑

i∈I Fi

• Kasiski: (aFk , aFk+1) ⇒ (aFk+2 , aFk+1) using only multiplications

• Circuit reversible, but check invertible elements∣∣a, b, a−1 mod N, b−1 mod N
〉
⇒

∣∣a, ab, a−1 mod N, (ab)−1 mod N
〉

• 45.7
√
n modular multiplications while Regev just 6

√
n, but the space

increases to store the different values to be reversible...

2. Number of runs: Regev requires no errors on the
√
n runs, while RV

using a filtering technique can remove very bad outputs

39

Reducing the number of qubits

New algorithm1

• Factoring RSA moduli using n/2 + o(n) qubits and O(n3) gates

• Benmarks for RSA-2048: ≤ 1700 qubits and ≤ 60× 236 Toffoli

gates (in 60 runs)

• Based on a completely classical arithmetic circuit

• Gidney reduces: qubits down to 1399 logical qubits by computing

the MSB rather than the LSB, 232 Toffoli gates as previous counting

and 9.2 runs, and update estimates at the physical level

Gidney latest result

1CFS, CRYPTO 2025, “Reducing the Number of Qubits in Quantum Factoring” 40

New algorithm1

• Factoring RSA moduli using n/2 + o(n) qubits and O(n3) gates

• Benmarks for RSA-2048: ≤ 1700 qubits and ≤ 60× 236 Toffoli

gates (in 60 runs)

• Based on a completely classical arithmetic circuit

• Gidney reduces: qubits down to 1399 logical qubits by computing

the MSB rather than the LSB, 232 Toffoli gates as previous counting

and 9.2 runs, and update estimates at the physical level

Gidney latest result

1CFS, CRYPTO 2025, “Reducing the Number of Qubits in Quantum Factoring” 40

Discrete logarithm and RSA special case

Find d s.t. a = gd :

f (x , y) := g xa−y = g x−dy mod N

• Also a hidden period problem: f (x + d , y + 1) = f (x , y)

• Also reduces to controlled multi-product

Eker̊a & Håstad method23:

• Reduce RSA factorisation (N=pq) to small DLOG of size n/2: if we

recover p + q, we can factor N

• Use an input register of size n/2 + (n/2)/s for some s

• ≈ s + 1 measurements to find d via an efficient lattice-based

post-processing. Typically s = O(log n).

Space is reduced to: n/2 +workspace

2Eker̊a, Håstad, “Quantum algorithms for computing short discrete logarithms and

factoring RSA integers, PQCrypto 2017”
3Eker̊a, “On post-processing in the quantum algorithm for computing short discrete

logarithms”, DCC 2020

41

Discrete logarithm and RSA special case

Find d s.t. a = gd : f (x , y) := g xa−y = g x−dy mod N

• Also a hidden period problem: f (x + d , y + 1) = f (x , y)

• Also reduces to controlled multi-product

Eker̊a & Håstad method23:

• Reduce RSA factorisation (N=pq) to small DLOG of size n/2: if we

recover p + q, we can factor N

• Use an input register of size n/2 + (n/2)/s for some s

• ≈ s + 1 measurements to find d via an efficient lattice-based

post-processing. Typically s = O(log n).

Space is reduced to: n/2 +workspace

2Eker̊a, Håstad, “Quantum algorithms for computing short discrete logarithms and

factoring RSA integers, PQCrypto 2017”
3Eker̊a, “On post-processing in the quantum algorithm for computing short discrete

logarithms”, DCC 2020

41

Discrete logarithm and RSA special case

Find d s.t. a = gd : f (x , y) := g xa−y = g x−dy mod N

• Also a hidden period problem: f (x + d , y + 1) = f (x , y)

• Also reduces to controlled multi-product

Eker̊a & Håstad method23:

• Reduce RSA factorisation (N=pq) to small DLOG of size n/2: if we

recover p + q, we can factor N

• Use an input register of size n/2 + (n/2)/s for some s

• ≈ s + 1 measurements to find d via an efficient lattice-based

post-processing. Typically s = O(log n).

Space is reduced to: n/2 +workspace
2Eker̊a, Håstad, “Quantum algorithms for computing short discrete logarithms and

factoring RSA integers, PQCrypto 2017”
3Eker̊a, “On post-processing in the quantum algorithm for computing short discrete

logarithms”, DCC 2020

41

Variant Shor’s algorithm

Ideas

• Once p + q is known, using N = pq, recover p is easy

• G = ⟨g⟩ a cyclic subgroup of (Z/NZ)∗ of order > (p + q − 2)/2

• Compute x = g (N−1)/2 = g (p+q−2)/2 mod N since

(N − φ(N)− 1)/2 = (p + q − 2)/2 as φ(N) = N − p − q + 1

• Compute short discrete logarithm d = (p + q − 2)/2 from g and x

• Get many pairs (j , k) s.t. k is the ℓ most significant bits of

dj mod 2m: Hidden Number Problem (HNP)

• May, Schlieper4: we can replace f by h ◦ f where h is a universal

hash function is still periodic

• How to compute some bits of ak mod N mod 2r with o(log n) space

4“Quantum period-finding is compression robust”

42

Variant Shor’s algorithm

Ideas

• Once p + q is known, using N = pq, recover p is easy

• G = ⟨g⟩ a cyclic subgroup of (Z/NZ)∗ of order > (p + q − 2)/2

• Compute x = g (N−1)/2 = g (p+q−2)/2 mod N since

(N − φ(N)− 1)/2 = (p + q − 2)/2 as φ(N) = N − p − q + 1

• Compute short discrete logarithm d = (p + q − 2)/2 from g and x

• Get many pairs (j , k) s.t. k is the ℓ most significant bits of

dj mod 2m: Hidden Number Problem (HNP)

• May, Schlieper4: we can replace f by h ◦ f where h is a universal

hash function is still periodic

• How to compute some bits of ak mod N mod 2r with o(log n) space

4“Quantum period-finding is compression robust”

42

Variant Shor’s algorithm

Ideas

• Once p + q is known, using N = pq, recover p is easy

• G = ⟨g⟩ a cyclic subgroup of (Z/NZ)∗ of order > (p + q − 2)/2

• Compute x = g (N−1)/2 = g (p+q−2)/2 mod N since

(N − φ(N)− 1)/2 = (p + q − 2)/2 as φ(N) = N − p − q + 1

• Compute short discrete logarithm d = (p + q − 2)/2 from g and x

• Get many pairs (j , k) s.t. k is the ℓ most significant bits of

dj mod 2m: Hidden Number Problem (HNP)

• May, Schlieper4: we can replace f by h ◦ f where h is a universal

hash function is still periodic

• How to compute some bits of ak mod N mod 2r with o(log n) space

4“Quantum period-finding is compression robust”

42

Variant Shor’s algorithm

Ideas

• Once p + q is known, using N = pq, recover p is easy

• G = ⟨g⟩ a cyclic subgroup of (Z/NZ)∗ of order > (p + q − 2)/2

• Compute x = g (N−1)/2 = g (p+q−2)/2 mod N since

(N − φ(N)− 1)/2 = (p + q − 2)/2 as φ(N) = N − p − q + 1

• Compute short discrete logarithm d = (p + q − 2)/2 from g and x

• Get many pairs (j , k) s.t. k is the ℓ most significant bits of

dj mod 2m: Hidden Number Problem (HNP)

• May, Schlieper4: we can replace f by h ◦ f where h is a universal

hash function is still periodic

• How to compute some bits of ak mod N mod 2r with o(log n) space

4“Quantum period-finding is compression robust”

42

Variant Shor’s algorithm

Ideas

• Once p + q is known, using N = pq, recover p is easy

• G = ⟨g⟩ a cyclic subgroup of (Z/NZ)∗ of order > (p + q − 2)/2

• Compute x = g (N−1)/2 = g (p+q−2)/2 mod N since

(N − φ(N)− 1)/2 = (p + q − 2)/2 as φ(N) = N − p − q + 1

• Compute short discrete logarithm d = (p + q − 2)/2 from g and x

• Get many pairs (j , k) s.t. k is the ℓ most significant bits of

dj mod 2m: Hidden Number Problem (HNP)

• May, Schlieper4: we can replace f by h ◦ f where h is a universal

hash function is still periodic

• How to compute some bits of ak mod N mod 2r with o(log n) space

4“Quantum period-finding is compression robust”

42

	Basic Circuits: Deutsch-Jozsa and Simon algorithms
	Shor Algorithm
	Regev Quantum factorisation algorithm: reducing the circuit size by n
	Reducing the number of qubits

